Question: Given the following statistics, calculate the lower bound (value) for the 99% Confidence Interval for true average apple consumption (A): (3 significant digits in final
Given the following statistics, calculate the lower bound (value) for the 99% Confidence Interval for true average apple consumption (A): (3 significant digits in final answer, use statistics table below)
Abar = 7.2 sd(A)= 1.9 N=784
Answer:
Warning: Since this test is very important to me, and the score will show once I submit. Please DON'T answer the question if you are not 100% sure your answer is correct, otherwise I will give a disslike.


Standard Normal Distribution Table shows P(0s7sz") #0.01 +0.02 +0.03 +0.04 40.05 +0.06 +0.07 40.08 +0.09 0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1480 0.1517 0.3 0.1443 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 2 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.3 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 3 es are ESTIMATEDT Distribution Chi- Square Distribution Table shows the t* for which Postst")=p Table shows the x2" for which P(0s x2 5x2 ")=p DEGREES DEG.of Of FREEDOM P=0.95 P=0.975 P=0.99 P=0.995 Freedom P=0.45 P 0.475 P 0.49 P 0.495 1 3.84 5.02 6.63 7.87 1 6.31 12.70 31.82 63.65 2 5.99 7.37 9.21 10.6 2 2.92 4.30 6.96 9.92 3 7.81 9.34 11.3 12.8 W 2.35 3.18 4.54 5.84 4 9.48 11.1 13.3 14.9 4 2.13 2.77 3.74 4.60 5 11.1 12.8 15.1 16.7 5 2.01 2.57 3.36 4.03 6 12.6 14.4 16.8 18.5 6 1.94 2.44 3.14 3.70 7 14.1 16.0 18.5 20.3 7 1.89 2.36 2.99 3.49 8 15.5 17.5 20.1 22.0 8 1.86 2.30 2.89 3.35 9 16.9 19.0 21.7 23.6 9 1.83 2.26 2.82 3.25 10 18.3 20.5 23.2 25.2 10 1.81 2.22 2.76 3.16 11 19.7 21.9 24.7 26.8 11 1.79 2.20 2.71 3.10 12 21.0 23.3 26.2 28.3 12 1.78 2.17 2.68 3.05 13 22.4 24.7 27.7 29.8 13 1.77 2.16 2.65 3.01 14 23.7 26.1 29.1 31.3 14 1.76 2.14 2.62 2.97 15 25.0 27.5 30.6 32.8 15 1.75 2.13 2.60 2.94 16 26.3 28.8 32.0 34.3 16 1.74 2.12 2.68 2.92 17 27.6 30.2 33.4 35.7 17 1.74 2.11 2.56 2.89 18 28. 31.5 34.8 37.2 18 1.73 2.10 2.55 2.87 19 30.1 32.5 36.2 38.6 19 1.72 2.09 2.53 2.86 20 314 34.2 37.6 40.0 20 1.72 2.08 2.52 2.84 21 32.7 35.5 38.9 41.4 21 1.72 2.08 2.51 2.83 22 33.9 36. 40.3 42.8 22 1.71 2.07 2.50 2.81 23 35.2 38.1 41.6 44.2 23 1.71 2.06 2.50 2.80 24 36.4 39.4 43.0 45.6 24 1.71 2.06 2.49 2.79 25 37.7 40.6 44.3 46.9 25 1.70 2.06 2.48 2.78 26 38.5 41.9 45.6 48.3 26 1.70 2.05 2.47 2.77 27 40.1 43.2 47.0 49.6 27 1.70 2.05 2.47 2.77 28 41.3 44.5 48.3 51.0 28 1.70 2.04 2.46 2.76 29 42.6 45.7 49.6 52.3 29 1.69 2.04 2.46 2.75 30 43.8 47.0 50.9 53.7 30 1.69 2.04 2.45 2.75 40 55.8 59.3 63.7 66.8 40 1.68 2.02 2.42 2.70 50 67.5 71.4 76.2 79.5 60 1.67 2.00 2.39 2.66 60 79.1 83.3 88.4 92.0 120 1.65 1.97 2.35 2.61 70 90 95.0 100 104 500 1.64 1.96 23 2.5 102 107 112 116 Both tables are ESTIMATED using Shacam 90 113 118 124 128 100 124 130 136 140
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
