Question: Greetings, Could someone please help with this R programming exercise? The data is below. Thank you A- Fit a Logistic Regression Model Fit a logistic
Greetings,
Could someone please help with this R programming exercise? The data is below. Thank you
A- Fit a Logistic Regression Model
- Fit a logistic regression model to the binary-classifier-data.csv dataset
- The dataset (found inbinary-classifier-data.csv) contains three variables; label, x, and y. The label variable is either 0 or 1 and is the output we want to predict using the x and y variables.
- What is the accuracy of the logistic regression classifier
binary-classifier-data.csv dataset
| label | x | y |
| 0 | 70.88469 | 83.17702 |
| 0 | 74.97176 | 87.92922 |
| 0 | 73.78333 | 92.20325 |
| 0 | 66.40747 | 81.10617 |
| 0 | 69.07399 | 84.53739 |
| 0 | 72.23616 | 86.38403 |
| 0 | 70.92514 | 89.73168 |
| 0 | 77.57454 | 98.63425 |
| 0 | 72.75624 | 92.37422 |
| 0 | 69.0366 | 91.74529 |
| 0 | 67.20828 | 85.62172 |
| 0 | 71.10117 | 101.4888 |
| 0 | 68.01709 | 83.81533 |
| 0 | 72.37629 | 89.20004 |
| 0 | 70.7026 | 86.51171 |
| 0 | 69.2368 | 89.98705 |
| 0 | 65.37138 | 83.04976 |
| 0 | 69.16044 | 91.30133 |
| 0 | 73.8469 | 93.36843 |
| 0 | 69.52171 | 89.94501 |
| 0 | 67.95124 | 91.79681 |
| 0 | 72.7026 | 92.32404 |
| 0 | 67.47315 | 86.56905 |
| 0 | 66.26135 | 90.7687 |
| 0 | 75.57815 | 91.81035 |
| 0 | 68.41029 | 85.32959 |
| 0 | 68.09382 | 91.80961 |
| 0 | 76.10679 | 86.92784 |
| 0 | 65.16124 | 80.7794 |
| 0 | 65.77994 | 88.73708 |
| 0 | 69.54418 | 82.12866 |
| 0 | 71.99746 | 78.86599 |
| 0 | 67.13947 | 88.0605 |
| 0 | 72.5218 | 81.78212 |
| 0 | 68.49425 | 82.44224 |
| 0 | 73.62704 | 86.19587 |
| 0 | 68.60145 | 84.93345 |
| 0 | 81.06559 | 92.99035 |
| 0 | 68.15576 | 83.97527 |
| 0 | 64.3719 | 86.22894 |
| 0 | 67.90532 | 93.47074 |
| 0 | 72.37434 | 80.93594 |
| 0 | 70.7967 | 90.86587 |
| 0 | 64.99727 | 85.80802 |
| 0 | 67.24623 | 88.50708 |
| 0 | 67.52769 | 98.87718 |
| 0 | 73.17363 | 96.58677 |
| 0 | 80.03457 | 91.47279 |
| 0 | 71.40789 | 90.15792 |
| 0 | 68.69496 | 89.33048 |
| 0 | 71.2808 | 84.72027 |
| 0 | 67.54185 | 85.54942 |
| 0 | 70.98123 | 93.74373 |
| 0 | 67.01065 | 83.36586 |
| 0 | 71.41361 | 90.11751 |
| 0 | 48.48391 | 40.06838 |
| 0 | 49.05764 | 38.49491 |
| 0 | 49.03912 | 39.83932 |
| 0 | 50.17205 | 43.06785 |
| 0 | 48.87424 | 42.09335 |
| 0 | 49.14474 | 37.78848 |
| 0 | 48.40126 | 42.33843 |
| 0 | 48.67201 | 39.54598 |
| 0 | 47.14664 | 45.14719 |
| 0 | 50.02214 | 45.69452 |
| 0 | 49.25281 | 42.64397 |
| 0 | 49.09991 | 40.074 |
| 0 | 49.20397 | 33.66105 |
| 0 | 47.83637 | 43.82052 |
| 0 | 49.65752 | 42.55331 |
| 0 | 48.26329 | 35.64447 |
| 0 | 49.7379 | 38.84591 |
| 0 | 49.64305 | 45.91976 |
| 0 | 47.16221 | 47.57488 |
| 0 | 48.67494 | 43.56255 |
| 0 | 46.13059 | 42.06876 |
| 0 | 48.73462 | 40.56963 |
| 0 | 47.89646 | 44.92116 |
| 0 | 48.29925 | 35.40606 |
| 0 | 48.74338 | 37.1465 |
| 0 | 48.74028 | 36.52425 |
| 0 | 45.05579 | 45.21615 |
| 0 | 48.67989 | 37.875 |
| 0 | 47.58688 | 38.75329 |
| 0 | 49.05341 | 36.4743 |
| 0 | 48.00753 | 44.83579 |
| 0 | 48.13913 | 43.73264 |
| 0 | 46.09651 | 36.21656 |
| 0 | 49.22916 | 39.46246 |
| 0 | 47.67341 | 39.54826 |
| 0 | 47.77431 | 30.91093 |
| 0 | 47.32824 | 37.03312 |
| 0 | 47.09939 | 42.39616 |
| 0 | 49.68217 | 36.63031 |
| 0 | 50.47284 | 43.83972 |
| 0 | 48.83413 | 41.56444 |
| 0 | 49.62159 | 47.53151 |
| 0 | 49.51867 | 47.50066 |
| 0 | 42.11056 | 75.6791 |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
