Question: Hello, below is my code for MPL image classification, I am running the code and I forgot to define the name, device. (Highlighted in bold)
Hello, below is my code for MPL image classification, I am running the code and I forgot to define the name, "device." (Highlighted in bold) Can someone look over it to see where it would be best to include the definition? Thank You.
import torchvision.datasets as datasets
import torch.optim as optim
import torch.utils.data as data
import torch.nn as nn
from torchvision import transforms
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.ToTensor(),
])
train_data = datasets.CIFAR100(root='data', train=True, transform=train_transform, download=True)
test_data = datasets.CIFAR100(root='data', train=False, transform=test_transform, download=True)
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.relu2 = nn.ReLU()
self.fc3 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu1(out)
out = self.fc2(out)
out = self.relu2(out)
out = self.fc3(out)
return out
input_size = 32 * 32 * 3
hidden_size = 512
num_classes = 100
learning_rate = 0.001
batch_size = 128
num_epochs = 10
model = MLP(input_size, hidden_size, num_classes)
train_loader = data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, input_size).to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
