Question: Hello, I would like some help in fixing errors in my code and implementing this assignment correctly, please. All classes are implemented and the only

Hello, I would like some help in fixing errors in my code and implementing this assignment correctly, please. All classes are implemented and the only thing I need help with is main.cpp. TIA!!

Hello, I would like some help in fixing errors in my code

---------------------------------------------------------------------

---------------------------------------------------------------------

linkedList.h

#ifndef LINKEDLIST_H

#define LINKEDLIST_H

#include

#include

using namespace std;

//Definition of the node

template

struct nodeType

{

Type info;

nodeType *link;

};

template

class linkedListIterator

{

public:

linkedListIterator();

//Default constructor

//Postcondition: current = nullptr;

linkedListIterator(nodeType *ptr);

//Constructor with a parameter.

//Postcondition: current = ptr;

Type operator*();

//Function to overload the dereferencing operator *.

//Postcondition: Returns the info contained in the node.

linkedListIterator operator++();

//Overload the pre-increment operator.

//Postcondition: The iterator is advanced to the next

// node.

bool operator==(const linkedListIterator& right) const;

//Overload the equality operator.

//Postcondition: Returns true if this iterator is equal to

// the iterator specified by right,

// otherwise it returns the value false.

bool operator!=(const linkedListIterator& right) const;

//Overload the not equal to operator.

//Postcondition: Returns true if this iterator is not

// equal to the iterator specified by

// right; otherwise it returns the value

// false.

private:

nodeType *current; //pointer to point to the current

/ode in the linked list

};

template

linkedListIterator::linkedListIterator()

{

current = nullptr;

}

template

linkedListIterator::

linkedListIterator(nodeType *ptr)

{

current = ptr;

}

template

Type linkedListIterator::operator*()

{

return current->info;

}

template

linkedListIterator linkedListIterator::operator++()

{

current = current->link;

return *this;

}

template

bool linkedListIterator::operator==

(const linkedListIterator& right) const

{

return (current == right.current);

}

template

bool linkedListIterator::operator!=

(const linkedListIterator& right) const

{ return (current != right.current);

}

//***************** class linkedListType ****************

template

class linkedListType

{

public:

const linkedListType& operator=

(const linkedListType&);

//Overload the assignment operator.

void initializeList();

//Initialize the list to an empty state.

//Postcondition: first = nullptr, last = nullptr, count = 0;

bool isEmptyList() const;

//Function to determine whether the list is empty.

//Postcondition: Returns true if the list is empty,

// otherwise it returns false.

void print() const;

//Function to output the data contained in each node.

//Postcondition: none

int length() const;

//Function to return the number of nodes in the list.

//Postcondition: The value of count is returned.

void destroyList();

//Function to delete all the nodes from the list.

//Postcondition: first = nullptr, last = nullptr, count = 0;

Type front() const;

//Function to return the first element of the list.

//Precondition: The list must exist and must not be

// empty.

//Postcondition: If the list is empty, the program

// terminates; otherwise, the first

// element of the list is returned.

Type back() const;

//Function to return the last element of the list.

//Precondition: The list must exist and must not be

// empty.

//Postcondition: If the list is empty, the program

// terminates; otherwise, the last

// element of the list is returned.

virtual bool search(const Type& searchItem) const = 0;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the

// list, otherwise the value false is

// returned.

virtual void insertFirst(const Type& newItem) = 0;

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list,

// last points to the last node in the list,

// and count is incremented by 1.

virtual void insertLast(const Type& newItem) = 0;

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem

// is inserted at the end of the list,

// last points to the last node in the list,

// and count is incremented by 1.

virtual void deleteNode(const Type& deleteItem) = 0;

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing

// deleteItem is deleted from the list.

// first points to the first node, last

// points to the last node of the updated

// list, and count is decremented by 1.

linkedListIterator begin();

//Function to return an iterator at the begining of the

//linked list.

//Postcondition: Returns an iterator such that current is

// set to first.

linkedListIterator end();

//Function to return an iterator one element past the

//last element of the linked list.

//Postcondition: Returns an iterator such that current is

// set to nullptr.

linkedListType();

//default constructor

//Initializes the list to an empty state.

//Postcondition: first = nullptr, last = nullptr, count = 0;

linkedListType(const linkedListType& otherList);

//copy constructor

~linkedListType();

//destructor

//Deletes all the nodes from the list.

//Postcondition: The list object is destroyed.

protected:

int count; //variable to store the number of

//elements in the list

nodeType *first; //pointer to the first node of the list

nodeType *last; //pointer to the last node of the list

private:

void copyList(const linkedListType& otherList);

//Function to make a copy of otherList.

//Postcondition: A copy of otherList is created and

// assigned to this list.

};

template

bool linkedListType::isEmptyList() const

{

return(first == nullptr);

}

template

linkedListType::linkedListType() //default constructor

{

first = nullptr;

last = nullptr;

count = 0;

}

template

void linkedListType::destroyList()

{

nodeType *temp; //pointer to deallocate the memory

//occupied by the node

while (first != nullptr) //while there are nodes in the list

{

temp = first; //set temp to the current node

first = first->link; //advance first to the next node

delete temp; //deallocate the memory occupied by temp

}

last = nullptr; //initialize last to nullptr; first has already

//been set to nullptr by the while loop

count = 0;

}

template

void linkedListType::initializeList()

{

destroyList(); //if the list has any nodes, delete them

}

template

void linkedListType::print() const

{

nodeType *current; //pointer to traverse the list

current = first; //set current so that it points to

//the first node

while (current != nullptr) //while more data to print

{

cout info

current = current->link;

}

}//end print

template

int linkedListType::length() const

{

return count;

} //end length

template

Type linkedListType::front() const

{

assert(first != nullptr);

return first->info; //return the info of the first node

}//end front

template

Type linkedListType::back() const

{

assert(last != nullptr);

return last->info; //return the info of the last node

}//end back

template

linkedListIterator linkedListType::begin()

{

linkedListIterator temp(first);

return temp;

}

template

linkedListIterator linkedListType::end()

{

linkedListIterator temp(nullptr);

return temp;

}

template

void linkedListType::copyList

(const linkedListType& otherList)

{

nodeType *newNode; //pointer to create a node

nodeType *current; //pointer to traverse the list

if (first != nullptr) //if the list is nonempty, make it empty

destroyList();

if (otherList.first == nullptr) //otherList is empty

{

first = nullptr;

last = nullptr;

count = 0;

}

else

{

current = otherList.first; //current points to the

//list to be copied

count = otherList.count;

//copy the first node

first = new nodeType; //create the node

assert(first != nullptr);

first->info = current->info; //copy the info

first->link = nullptr; //set the link field of

//the node to nullptr

last = first; //make last point to the

//first node

current = current->link; //make current point to

//the next node

//copy the remaining list

while (current != nullptr)

{

newNode = new nodeType; //create a node

assert(newNode != nullptr);

newNode->info = current->info; //copy the info

newNode->link = nullptr; //set the link of

/ewNode to nullptr

last->link = newNode; //attach newNode after last

last = newNode; //make last point to

//the actual last node

current = current->link; //make current point

//to the next node

}//end while

}//end else

}//end copyList

template

linkedListType::~linkedListType() //destructor

{

destroyList();

}//end destructor

template

linkedListType::linkedListType

(const linkedListType& otherList)

{

first = nullptr;

copyList(otherList);

}//end copy constructor

//overload the assignment operator

template

const linkedListType& linkedListType::operator=

(const linkedListType& otherList)

{

if (this != &otherList) //avoid self-copy

{

copyList(otherList);

}//end else

return *this;

}

#endif /* LINKEDLIST_H */

----------------------------------------------------------

----------------------------------------------------------

unorderedLinkedList.h

#ifndef UNORDEREDLINKEDLIST_H

#define UNORDEREDLINKEDLIST_H

#include "linkedList.h"

using namespace std;

template

class unorderedLinkedList: public linkedListType

{

public:

bool search(const Type& searchItem) const;

//Function to determine whether searchItem is in the list.

//Postcondition: Returns true if searchItem is in the

// list, otherwise the value false is

// returned.

void insertFirst(const Type& newItem);

//Function to insert newItem at the beginning of the list.

//Postcondition: first points to the new list, newItem is

// inserted at the beginning of the list,

// last points to the last node in the

// list, and count is incremented by 1.

void insertLast(const Type& newItem);

//Function to insert newItem at the end of the list.

//Postcondition: first points to the new list, newItem

// is inserted at the end of the list,

// last points to the last node in the

// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);

//Function to delete deleteItem from the list.

//Postcondition: If found, the node containing

// deleteItem is deleted from the list.

// first points to the first node, last

// points to the last node of the updated

// list, and count is decremented by 1.

void mergeSort();

private:

void recMergeSort(nodeType* &head);

void divideList(nodeType* first1,

nodeType* &first2);

nodeType* mergeList(nodeType* first1,

nodeType* first2);

};

template

bool unorderedLinkedList::

search(const Type& searchItem) const

{

nodeType *current; //pointer to traverse the list

bool found = false;

current = this->first; //set current to point to the first

/ode in the list

while (current != nullptr && !found) //search the list

if (current->info == searchItem) //searchItem is found

found = true;

else

current = current->link; //make current point to

//the next node

return found;

}//end search

template

void unorderedLinkedList::insertFirst(const Type& newItem)

{

nodeType *newNode; //pointer to create the new node

newNode = new nodeType; //create the new node

assert(newNode != nullptr); //if unable to allocate memory,

//terminate the program

newNode->info = newItem; //store the new item in the node

newNode->link = this->first; //insert newNode before first

this->first = newNode; //make first point to the

//actual first node

this->count++; //increment count

if (this->last == nullptr) //if the list was empty, newNode is also

//the last node in the list

this->last = newNode;

}//end insertFirst

template

void unorderedLinkedList::insertLast(const Type& newItem)

{

nodeType *newNode; //pointer to create the new node

newNode = new nodeType; //create the new node

assert(newNode != nullptr); //if unable to allocate memory,

//terminate the program

newNode->info = newItem; //store the new item in the node

newNode->link = nullptr; //set the link field of newNode

//to nullptr

if (this->first == nullptr) //if the list is empty, newNode is

//both the first and last node

{

this->first = newNode;

this->last = newNode;

this->count++; //increment count

}

else //the list is not empty, insert newNode after last

{

this->last->link = newNode; //insert newNode after last

this->last = newNode; //make last point to the actual

//last node in the list

this->count++; //increment count

}

}//end insertLast

template

void unorderedLinkedList::deleteNode(const Type& deleteItem)

{

nodeType *current; //pointer to traverse the list

nodeType *trailCurrent; //pointer just before current

bool found;

if (this->first == nullptr) //Case 1; the list is empty.

cout

else

{

if (this->first->info == deleteItem) //Case 2

{

current = this->first;

this->first = this->first->link;

this->count--;

if (this->first == nullptr) //the list has only one node

this->last = nullptr;

delete current;

}

else //search the list for the node with the given info

{

found = false;

trailCurrent = this->first; //set trailCurrent to point

//to the first node

current = this->first->link; //set current to point to

//the second node

while (current != nullptr && !found)

{

if (current->info != deleteItem)

{

trailCurrent = current;

current = current-> link;

}

else

found = true;

}//end while

if (found) //Case 3; if found, delete the node

{

trailCurrent->link = current->link;

this->count--;

if (this->last == current) /ode to be deleted

//was the last node

this->last = trailCurrent; //update the value

//of last

delete current; //delete the node from the list

}

else

cout

}//end else

}//end else

}//end deleteNode

template

void unorderedLinkedList::

divideList(nodeType* first1,

nodeType* &first2)

{

nodeType* middle;

nodeType* current;

if (first1 == nullptr) //list is empty

first2 = nullptr;

else if (first1->link == nullptr) //list has only one node

first2->link = nullptr;

else

{

middle = first1;

current = first1->link;

if (current != nullptr) //list has more than two nodes

current = current->link;

while (current != nullptr)

{

middle = middle->link;

current = current->link;

if (current != nullptr)

current = current->link;

} //end while

first2 = middle->link; //first2 points to the first

/ode of the second sublist

middle->link = nullptr; //set the link of the last node

//of the first sublist to nullptr

} //end else

} //end divideList

template

nodeType* unorderedLinkedList::

mergeList(nodeType* first1,

nodeType* first2)

{

nodeType *lastSmall; //pointer to the last node of

//the merged list

nodeType *newHead; //pointer to the merged list

if (first1 == nullptr) //the first sublist is empty

return first2;

else if (first2 == nullptr) //the second sublist is empty

return first1;

else

{

if (first1->info info) //compare the

//first nodes

{

newHead = first1;

first1 = first1->link;

lastSmall = newHead;

}

else

{

newHead = first2;

first2 = first2->link;

lastSmall = newHead;

}

while (first1 != nullptr && first2 != nullptr)

{

if (first1->info info)

{

lastSmall->link = first1;

lastSmall = lastSmall->link;

first1 = first1->link;

}

else

{

lastSmall->link = first2;

lastSmall = lastSmall->link;

first2 = first2->link;

}

} //end while

if (first1 == nullptr) //first sublist exhausted first

lastSmall->link = first2;

else //second sublist exhausted first

lastSmall->link = first1;

return newHead;

}

}//end mergeList

template

void unorderedLinkedList::recMergeSort(

nodeType* &head)

{

nodeType *otherHead;

if (head != nullptr) //if the list is not empty

if (head->link != nullptr) //if the list has more than

//one node

{

divideList(head, otherHead);

recMergeSort(head);

recMergeSort(otherHead);

head = mergeList(head, otherHead);

}

} //end recMergeSort

template

void unorderedLinkedList::mergeSort()

{

recMergeSort(this->first);

if (this->first == nullptr)

this->last = nullptr;

else

{

this->last = this->first;

while (this->last->link != nullptr)

this->last = this->last->link;

}

} //end mergeSort

#endif /* UNORDEREDLINKEDLIST_H */

--------------------------------------------------------------

--------------------------------------------------------------

searchSortAlgorithms.h

#ifndef SEARCHSORTALGORITHMS_H #define SEARCHSORTALGORITHMS_H

template int seqSearch(const elemType list[], int length, const elemType& item) { int loc; bool found = false;

loc = 0;

while (loc

if (found) return loc; else return -1; } //end seqSearch

template int binarySearch(const elemType list[], int length, const elemType& item) { int first = 0; int last = length - 1; int mid;

bool found = false;

while (first

if (list[mid] == item) found = true; else if (list[mid] > item) last = mid - 1; else first = mid + 1; }

if (found) return mid; else return -1; } //end binarySearch

template void bubbleSort(elemType list[], int length) { for (int iteration = 1; iteration list[index + 1]) { elemType temp = list[index]; list[index] = list[index + 1]; list[index + 1] = temp; } } } } //end bubbleSort

template void selectionSort(elemType list[], int length) { int loc, minIndex;

for (loc = 0; loc

template void swap(elemType list[], int first, int second) { elemType temp;

temp = list[first]; list[first] = list[second]; list[second] = temp; } //end swap

template int minLocation(elemType list[], int first, int last) { int loc, minIndex;

minIndex = first;

for (loc = first + 1; loc

return minIndex; } //end minLocation

template void insertionSort(elemType list[], int length) { for (int firstOutOfOrder = 1; firstOutOfOrder

do { list[location] = list[location - 1]; location--; } while(location > 0 && list[location - 1] > temp);

list[location] = temp; } } //end insertionSort

template void quickSort(elemType list[], int length) { recQuickSort(list, 0, length - 1); } //end quickSort

template void recQuickSort(elemType list[], int first, int last) { int pivotLocation;

if (first

template int partition(elemType list[], int first, int last) { elemType pivot;

int index, smallIndex;

swap(list, first, (first + last) / 2);

pivot = list[first]; smallIndex = first;

for (index = first + 1; index

swap(list, first, smallIndex);

return smallIndex; } //end partition

template void heapSort(elemType list[], int length) { buildHeap(list, length);

for (int lastOutOfOrder = length - 1; lastOutOfOrder >= 0; lastOutOfOrder--) { elemType temp = list[lastOutOfOrder]; list[lastOutOfOrder] = list[0]; list[0] = temp; heapify(list, 0, lastOutOfOrder - 1); }//end for }//end heapSort

template void heapify(elemType list[], int low, int high) { int largeIndex;

elemType temp = list[low]; //copy the root node of //the subtree

largeIndex = 2 * low + 1; //index of the left child

while (largeIndex

if (temp > list[largeIndex]) //subtree //is already in a heap break; else { list[low] = list[largeIndex]; //move the larger //child to the root low = largeIndex; //go to the subtree to //restore the heap largeIndex = 2 * low + 1; } }//end while

list[low] = temp; //insert temp into the tree, //that is, list }//end heapify

template void buildHeap(elemType list[], int length) { for (int index = length / 2 - 1; index >= 0; index--) heapify(list, index, length - 1); }

#endif /* SEARCHSORTALGORITHMS_H */

----------------------------------------------------------------------------

----------------------------------------------------------------------------

main.cpp

#include #include #include #include #include "searchSortAlgorithms.h" #include "unorderedLinkedList.h"

using namespace std;

int main() { int array = [10000]; //assign 10,000 elements in array int list1[array]; for(int i = 0; i

exit(EXIT_SUCCESS); }

HOMEWORK #33-Sorting Time for a Vector EXTRA CREDIT HOMEWORK POINTS: 50 Modify the homework from Chapter 18, which corresponds to Homework #34. First, fix your code if it was not working previously. Then create list6, which is a 10,000 element vector. Copy the unordered elements from listl into the vector, and compare the time necessary to sort the vector compared to the other algorithms you coded. Print each of the execution times for the 5+1 algorithms to the screen for your 10,000 element unsorted arrays/linked list/vector. 3.573e-01 s Bubble Sorting Time: Selection Sorting Time: 1.580e-01 s Insertion Sorting Time: 9.478e-02 s Quick Sorting Time: Merge Sorting Time: Vector Sorting Time: 1.568e-03 s 1.743e-03 s x.XxxxxXx s

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!