Question: Here is the dynamic programming matrix resulting from a run of the standard pairwise local sequence alignment algorithm (with linear gap penalty d=8) on the

Here is the dynamic programming matrix resultingHere is the dynamic programming matrix resulting

Here is the dynamic programming matrix resulting from a run of the standard pairwise local sequence alignment algorithm (with linear gap penalty d=8) on the protein sequences DWHAEP and WHEDPA, using the BLOSUM50 matrix e (found on page 16 of Durbin et al.): DWH A EP 1000 | 0 0 0 0 101 W0 0 15 7000 H0 0 7 25 17 9 1 E 220 17 24 23 15 D0802 16 2622 P004 1 8 18 36 |||0||0 | 2 ? ? 128 | (a) Complete the table, by replacing the ?'s with the appropriate numbers. [40 marks] (b) From the table, give the optimal local alignment for these two sequences and its score. [60 marks] - 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 # Entries for the BLOSUM50 matrix at a scale of in (2)/3.0. A R N D C E G H L K M F P S TW Y V B J Z * A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0 -2 -2 -1 -1 -5 R-2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 -1 -3 0 -1 -5 N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3 5 -4 0-1 -5 D-2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 6 -4 1 -1 -5 C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3 -2 -3 -1 -5 Q -1 1 0 0-3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 0 -3 4 -1 -5 E -1 0 0 2 -3 2 6-3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 1 -3 5 -1 -5 G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4 -1 -4 -2 -1 -5 H-2 0 1 -1 -3 1 0-2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 0 -3 0 -1 -5 I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4 -4 4 -3 -1 L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 -4 4 -3 -1 -5 K-1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3 0 -3 1 -1 M -1 -2 -2 -4 -2 0-2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 -3 2 -1 -1 F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1 -4 1 -4 -1 -5 P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2 -3 -1 -1 -5 S 1 -1 1 0-1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 0 -3 0 -1 -5 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0 0 -1 -1 -1 -5 W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 -5 -2 -2 -1 -5 Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1 -3 -1 -2 -1 -5 V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5 -3 2 -3 -1 B -2 -1 5 6-3 0 1 -1 0 -4 -4 0 -3 -4 -2 0 0 -5 -3 -3 6-4 1 -1 J -2 -3 -4 -4 -2 -3 -3 -4 -3 4 4 -3 2 1 -3 -3 -1 -2 -1 2 -4 4 -3 -1 -5 Z -1 0 0 1 -3 4 5 -2 0 -3 -3 1 -1 -4 -1 0 -1 -2 -2 -3 1 -3 5 -1 -5 X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -5 * -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1 Here is the dynamic programming matrix resulting from a run of the standard pairwise local sequence alignment algorithm (with linear gap penalty d=8) on the protein sequences DWHAEP and WHEDPA, using the BLOSUM50 matrix e (found on page 16 of Durbin et al.): DWH A EP 1000 | 0 0 0 0 101 W0 0 15 7000 H0 0 7 25 17 9 1 E 220 17 24 23 15 D0802 16 2622 P004 1 8 18 36 |||0||0 | 2 ? ? 128 | (a) Complete the table, by replacing the ?'s with the appropriate numbers. [40 marks] (b) From the table, give the optimal local alignment for these two sequences and its score. [60 marks] - 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 # Entries for the BLOSUM50 matrix at a scale of in (2)/3.0. A R N D C E G H L K M F P S TW Y V B J Z * A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0 -2 -2 -1 -1 -5 R-2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 -1 -3 0 -1 -5 N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3 5 -4 0-1 -5 D-2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 6 -4 1 -1 -5 C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3 -2 -3 -1 -5 Q -1 1 0 0-3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 0 -3 4 -1 -5 E -1 0 0 2 -3 2 6-3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 1 -3 5 -1 -5 G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4 -1 -4 -2 -1 -5 H-2 0 1 -1 -3 1 0-2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 0 -3 0 -1 -5 I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4 -4 4 -3 -1 L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 -4 4 -3 -1 -5 K-1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3 0 -3 1 -1 M -1 -2 -2 -4 -2 0-2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 -3 2 -1 -1 F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1 -4 1 -4 -1 -5 P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2 -3 -1 -1 -5 S 1 -1 1 0-1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 0 -3 0 -1 -5 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0 0 -1 -1 -1 -5 W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 -5 -2 -2 -1 -5 Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1 -3 -1 -2 -1 -5 V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5 -3 2 -3 -1 B -2 -1 5 6-3 0 1 -1 0 -4 -4 0 -3 -4 -2 0 0 -5 -3 -3 6-4 1 -1 J -2 -3 -4 -4 -2 -3 -3 -4 -3 4 4 -3 2 1 -3 -3 -1 -2 -1 2 -4 4 -3 -1 -5 Z -1 0 0 1 -3 4 5 -2 0 -3 -3 1 -1 -4 -1 0 -1 -2 -2 -3 1 -3 5 -1 -5 X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -5 * -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 1

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related General Management Questions!