Question: hey, I need to build an autoencoder network that has a bottleneck with 9 neurons in it, but I can't tell how many neurons are
hey, I need to build an autoencoder network that has a bottleneck with 9 neurons in it, but I can't tell how many neurons are in each network. How would I go about understanding this? I need to make an autoencoder based off this code.
model=keras.models.Sequential()
# 3x3 kernel size, 10 channels in first hidden layer:
model.add(keras.layers.Conv2D(4,5,input_shape=(None,None,1),
activation="sigmoid",padding='same'))
model.add(keras.layers.AveragePooling2D(pool_size=(3,3),padding='same')) # down
model.add(keras.layers.Conv2D(4,5,
activation="sigmoid",padding='same'))
model.add(keras.layers.AveragePooling2D(pool_size=(3,3),padding='same')) # down
model.add(keras.layers.Conv2D(1,3,
activation="sigmoid",padding='same'))
model.add(keras.layers.UpSampling2D(size=(3,3))) # up
model.add(keras.layers.Conv2D(4,5,
activation="sigmoid",padding='same'))
model.add(keras.layers.UpSampling2D(size=(3,3))) # up
model.add(keras.layers.Conv2D(4,5,
activation="sigmoid",padding='same'))
model.add(keras.layers.Conv2D(1,3,activation="linear",padding='same'))
model.compile(loss='mean_squared_error',
optimizer='adam')
model.summary()
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
