Question: Hi, The code below shows an error. Can you please fix the error in the same code provided Not Defined gives error F1Score and CohenKappa

Hi,

The code below shows an error. Can you please fix the error in the same code provided

Not Defined gives error F1Score and CohenKappa

# Define Constants

FAST_RUN = False

IMAGE_WIDTH=256 # 150 accept maybe 256

IMAGE_HEIGHT=256 # maybe 256

IMAGE_SIZE=(IMAGE_WIDTH, IMAGE_HEIGHT)

IMAGE_CHANNELS=3 # maybe not need

physical_devices = tf.config.experimental.list_physical_devices('GPU')

print(physical_devices)

if physical_devices:

tf.config.experimental.set_memory_growth(physical_devices[0], True)

# Prepare Traning Data

filenames = os.listdir("D:\RansomSecondApproach\Ransomware_Detection_using _CNN\MixImages")

categories = []

for filename in filenames:

category = filename.split('l')[0]

if category == 'image_benign_':

categories.append(0)

else:

categories.append(1)

df = pd.DataFrame({

'filename': filenames,

'category': categories

})

print(df.head())

print(df.tail())

# in collab it will work

df['category'].value_counts().plot.bar()

# See sample image

# sample = random.choice(filenames)

# image = load_img("D:\Ransomware_Detection_using _CNN\MixImages"+sample)

# plt.imshow(image)

model = Sequential()

model.add(Conv2D(16, (3, 3), activation='relu', input_shape=(IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS)))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(32, (3, 3), activation='relu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(128, (3, 3), activation='relu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(256, (3, 3), activation='relu'))

model.add(BatchNormalization())

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(512, activation='relu'))

model.add(BatchNormalization())

model.add(Dropout(0.5))

model.add(Dense(2, activation='softmax')) # 2 because we have cat and dog classes

model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy',

tf.keras.metrics.Precision(name='precision'),

tf.keras.metrics.Recall(name='recall'),

tf.keras.metrics.AUC(name='auc'),

tf.keras.metrics.CategoricalAccuracy(name='categorical_accuracy'),

tf.keras.metrics.FalsePositives(name='false_positives'),

tf.keras.metrics.FalseNegatives(name='false_negatives'),

tf.keras.metrics.TruePositives(name='true_positives'),

tf.keras.metrics.TrueNegatives(name='true_negatives')])

#########################################################

# Not Defined gives error F1Score and CohenKappa

tf.keras.metrics.F1Score(num_classes=2, name='f1_score'),

tf.keras.metrics.CohenKappa(name='cohen_kappa')])

##########################################################

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!