Question: Homomorphic encryption is a form of encryption where a specific algebraic operation performed on the plaintext is equivalent to another (possibly different) algebraic operation performed

Homomorphic encryption is a form of encryption where a specific algebraic operation performed on the plaintext is equivalent to another (possibly different) algebraic operation performed on the ciphertext. A multiplicative homomorphic cryptosystem has an encryption function E that satisfies the following property where Mi and M2 are messages. Prove that the RSA cryptosystem is multiplicative homomorphic. Assume that the same key RSA public key (e,n) is used to encrypt Mi, M2 and Mi x M2. Homomorphic encryption is a form of encryption where a specific algebraic operation performed on the plaintext is equivalent to another (possibly different) algebraic operation performed on the ciphertext. A multiplicative homomorphic cryptosystem has an encryption function E that satisfies the following property where Mi and M2 are messages. Prove that the RSA cryptosystem is multiplicative homomorphic. Assume that the same key RSA public key (e,n) is used to encrypt Mi, M2 and Mi x M2
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
