Question: I nned new Array formulas can simplify this procedure: blolos A E F REPLACING THE MAX, MIN OF OFF-DIAGONAL ELEMENTS OF A MATRIX Using array
Array formulas can simplify this procedure: blolos A E F REPLACING THE MAX, MIN OF OFF-DIAGONAL ELEMENTS OF A MATRIX Using array formula 2 The source matrix 3 A B D 4 10 2 3 5 B 20 4 -3 6 1 5 60 6 7 D 4 2 -10 25 8 9 Lookup table for replacements 10 -10 1 11 -6 12 -2 13 2 iv 14 6 v 15 10 vi 16 Range below contains array formula 17 =IF(B3.E3-A4:A7, B4:E7.VLOOKUP(B4:E7,A10:B15,2)) 18 D 19 10 Tv iv {IF(B3 E3-A4 A7 B4E7.VLOOKUP BA E7 A10:815.2) 20 20 IV 21 C 60 22 D 1 25 Exercises 1. Use a homemade array function to multiply the vector 1.2.3.4.5) times the constant 3. Use the array functions Transpose and MMult to multiply the row vector (1.2.3.4.5) 2. times the column vector 7 3. Below you will find the variance-covariance matrix of six stocks. Use an array function to create a matrix with only variances on the diagonal and with zeros elsewhere. Array formulas can simplify this procedure: blolos A E F REPLACING THE MAX, MIN OF OFF-DIAGONAL ELEMENTS OF A MATRIX Using array formula 2 The source matrix 3 A B D 4 10 2 3 5 B 20 4 -3 6 1 5 60 6 7 D 4 2 -10 25 8 9 Lookup table for replacements 10 -10 1 11 -6 12 -2 13 2 iv 14 6 v 15 10 vi 16 Range below contains array formula 17 =IF(B3.E3-A4:A7, B4:E7.VLOOKUP(B4:E7,A10:B15,2)) 18 D 19 10 Tv iv {IF(B3 E3-A4 A7 B4E7.VLOOKUP BA E7 A10:815.2) 20 20 IV 21 C 60 22 D 1 25 Exercises 1. Use a homemade array function to multiply the vector 1.2.3.4.5) times the constant 3. Use the array functions Transpose and MMult to multiply the row vector (1.2.3.4.5) 2. times the column vector 7 3. Below you will find the variance-covariance matrix of six stocks. Use an array function to create a matrix with only variances on the diagonal and with zeros elsewhere
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
