Question: I want these code to converted in PYTHON. it just a conversion don't make an excuse 1 question policy if u don't want to answer




![over [02] with 10 aubintervals using the Composite Tragcreidel rule. Uac aer-defined](https://dsd5zvtm8ll6.cloudfront.net/si.experts.images/questions/2024/09/66fa3086d87e2_45466fa30867c085.jpg)
I want these code to converted in PYTHON. it just a conversion don't make an excuse 1 question policy if u don't want to answer please leave my question will refunded.
Qucation 33: Write : C++ program te svaluate the integrel of F(x) - 2 + 1 over [02] with 10 aubintervals using the Composite Tragcreidel rule. Uac aer-defined C++ function for evaluates f() at the different aedes (1..., for finding the values off at the different nade Include =includescmath> using namespace std; double tval(double x) { double y - sqrt(x*x + 1); return y; 3 Int main { Int n. 1: double h, sum , 1, x0, xn, xc, fco,foon, foc; Input Section -1/ cout> XO; cout> xn; cout> Processing Section // finding step size h - (x -x txo - Ivalo) fxn-Ivalcxn) I-XO + fx : XC-X sum - 0.0 ; for (1-1; 1c-n-1 : 1++) { :: 8:+ : fxc-fvalcmc) sum-sum - Exc; } 1 - Ch / 2.0) (1 + 2.0 sum); --/ Output Section cout #include using namespace std; int main() { intniji doubleh, sumi, sum2, 1, x0, xn, xc, fx0, fxn, fxc; Input Section cout> xD ; cout>xn; cout>n; ----- Processing Section // finding step size n = (xn - x0); fx0 = sqrt(x0x0 + 1) : fxn = sqrt(xnxn + 1) : I = fxO+ fxn x = x0 : sumi = 0.0; sum2 = 0.0 ; for(j=1 ; j #include using namespace std; int main() { int n.: doubleh, sumi, sum2, 1, x0, xn, xc, fx0, fxn, fxc; Input Section cout> xD ; cout>n; cout> Processing Section // finding step size h = (x - x0) : fx0 = sqrt(x0*x0 + 1); fxn = sqrt(xnxn + 1) : I = fx0+ fxn xc = x0; sum1 = 0.0 ; sum2 = 0.0 ; for(j=1 ; j #include using namespace std; #define n 3 // number of unknowns #define TOL 0.000001 #define N 200 11 error tolerance // maximum number of iterations int main() { inti,j,k; double a[n][n] = {{0.4, 0, 0.12}, {0, 0.64, 0.32}, {0.12, 0.32, 0.56}} ; // coefficient matrix double b[n] = {1.4, 1.6, 5.4} ; // right-hand side constants double x[n] // the solution vector double xp[n], sum , err cout =includescmath> using namespace std; double tval(double x) { double y - sqrt(x*x + 1); return y; 3 Int main { Int n. 1: double h, sum , 1, x0, xn, xc, fco,foon, foc; Input Section -1/ cout> XO; cout> xn; cout> Processing Section // finding step size h - (x -x txo - Ivalo) fxn-Ivalcxn) I-XO + fx : XC-X sum - 0.0 ; for (1-1; 1c-n-1 : 1++) { :: 8:+ : fxc-fvalcmc) sum-sum - Exc; } 1 - Ch / 2.0) (1 + 2.0 sum); --/ Output Section cout #include using namespace std; int main() { intniji doubleh, sumi, sum2, 1, x0, xn, xc, fx0, fxn, fxc; Input Section cout> xD ; cout>xn; cout>n; ----- Processing Section // finding step size n = (xn - x0); fx0 = sqrt(x0x0 + 1) : fxn = sqrt(xnxn + 1) : I = fxO+ fxn x = x0 : sumi = 0.0; sum2 = 0.0 ; for(j=1 ; j #include using namespace std; int main() { int n.: doubleh, sumi, sum2, 1, x0, xn, xc, fx0, fxn, fxc; Input Section cout> xD ; cout>n; cout> Processing Section // finding step size h = (x - x0) : fx0 = sqrt(x0*x0 + 1); fxn = sqrt(xnxn + 1) : I = fx0+ fxn xc = x0; sum1 = 0.0 ; sum2 = 0.0 ; for(j=1 ; j #include using namespace std; #define n 3 // number of unknowns #define TOL 0.000001 #define N 200 11 error tolerance // maximum number of iterations int main() { inti,j,k; double a[n][n] = {{0.4, 0, 0.12}, {0, 0.64, 0.32}, {0.12, 0.32, 0.56}} ; // coefficient matrix double b[n] = {1.4, 1.6, 5.4} ; // right-hand side constants double x[n] // the solution vector double xp[n], sum , err cout