Question: ( ii ) Polynomial Modulus over GF with m ( x ) Write a function to long divide two polynomials, i . e . (

(ii) Polynomial Modulus over GF with m(x)
Write a function to long divide two polynomials, i.e.(A(x),m(x)). Use the binary shortcut to indicate the values of A(x)=an**xn+aa-1**xn-1+dots
a5x5+a4x4+a3x3+a2x2+a4x1+a0x0 becomes the binary number anan-1dotsa5a4a5a2a1a0 and perform the respective bitwise operations.
This makes m(x)=0x11B in hexadecimal for example. The function use modulo 2 math. A possible algorithm:
Unsigned int divide_galois(A(x),m(x))
{
result =A(x);
while (get_degree(result)>= get_degree (m(x)){
}
result = result XOR ( get_degree result
***Please write this function in JAVA!!!***
***Also please give outputs for the galois fields prompts below using the calculator function created above***
get_degree(0x3CF0)=_________________
get_degree(0x10000)=_________________
get_degree(0x00)=___________________
get_degree(0x01)=___________________
divide_galois(0x1000,0x11B)=________________________
divide_galois(0xE1,0x11B)=_________________________
divide_galois(0x32CFE1,0x11B)=_________________________
divide_galois(0xE1,0x11B)=_________________________
multiply_galois(0xD5,0x61,0x11B)=___________________
multiply_galois(0x1E3C,0x1E3C,0x11B)=____________________
 (ii) Polynomial Modulus over GF with m(x) Write a function to

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!