Question: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model _ selection import train _ test _
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.modelselection import traintestsplit, GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracyscore, confusionmatrix, classificationreport, rocaucscore, roccurve
from sklearn.linearmodel import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
# Load dataset
df pdreadcsvheartdiseaseuci.csv
# Check the first few rows of the dataset
dfhead
# # Get basic information and summary statistics
dfinfo
dfdescribe
# # Check Data Types and Missing Values
# Data types and missing values
dfinfo
# Checking for missing values
dfisnullsum
# # Distribution of Age
pltfigurefigsize
snshistplotdfage bins kdeTrue, color'blue'
plttitleAge Distribution'
pltxlabelAge
pltylabelCount
pltshow
# # Heart Disease by Sex
pltfigurefigsize
snscountplotx'sex', hue'num', datadf
plttitleHeart Disease by Gender'
pltxlabelSex Female, Male
pltylabelCount
pltlegendtitle'Heart Disease', labelsNo 'Yes'
pltshow
# # Chest Pain Type cp Distribution
pltfigurefigsize
snscountplotxcp datadf
plttitleChest Pain Type Distribution'
pltxlabelChest Pain Type
pltylabelCount
pltshow
# # Correlation Heatmap
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Load dataset
df pdreadcsvheartdiseaseuci.csv
# Convert categorical columns to numeric
dfsex dfsexmapMale: 'Female':
dfcp pdCategoricaldfcpcodes
dfthal pdCategoricaldfthalcodes
dffbs dffbsmapTrue: False:
dfdataset pdCategoricaldfdatasetcodes # Convert 'dataset' column to numeric if needed
# Convert other categorical columns
dfrestecg pdCategoricaldfrestecgcodes
dfslope pdCategoricaldfslopecodes
# Drop nonnumeric columns if any remain
df dfselectdtypesincludenpnumber
# Create the correlation matrix
pltfigurefigsize
corrmatrix dfcorr
snsheatmapcorrmatrix, annotTrue, cmap'coolwarm', linewidths
plttitleCorrelation Heatmap'
pltshow
# # Resting Blood Pressure trestbps Distribution
pltfigurefigsize
snshistplotdftrestbps bins kdeTrue, color'green'
plttitleResting Blood Pressure Distribution'
pltxlabelResting Blood Pressure mm Hg
pltylabelCount
pltshow
# # Cholesterol Levels Distribution chol
pltfigurefigsize
snshistplotdfchol bins kdeTrue, color'red'
plttitleCholesterol Levels Distribution'
pltxlabelCholesterol mgdl
pltylabelCount
pltshow
# # Oldpeak Distribution by Heart Disease
pltfigurefigsize
snsboxplotx'num', y'oldpeak', datadf
plttitleOldpeak Distribution by Heart Disease'
pltxlabelHeart Disease No Yes
pltylabelOldpeak
pltshow
# # Thalach Maximum Heart Rate Achieved vs Age
pltfigurefigsize
snsscatterplotx'age', y'thalch', hue'num', datadf palette'coolwarm'
plttitleAge vs Maximum Heart Rate Achieved Thalach
pltxlabelAge
pltylabelMaximum Heart Rate Achieved'
pltlegendtitle'Heart Disease', labelsNo 'Yes'
pltshow
# # Number of Major Vessels ca vs Heart Disease
pltfigurefigsize
snscountplotxca hue'num', datadf palette'Set
plttitleNumber of Major Vessels ca vs Heart Disease'
pltxlabelNumber of Major Vessels'
pltylabelCount
pltlegendtitle'Heart Disease', labelsNo 'Yes'
pltshow
# # Data Preprocessing
# # Identify Features and Target Variable
# Features and target variable
X dfdropnum axis
y dfnum
Kindly explain this code
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
