Question: In R programming, use direct X-Y variable plots and residuals vs. fitted value plots implemented in R, as well as perhaps other types of plots
In R programming, use direct X-Y variable plots and residuals vs. fitted value plots
implemented in R, as well as perhaps other types of plots and/or regression diagnostic
tests and/or goodness-of-fit measures and the like, to identify an appropriate linear
regression model (possibly requiring transformations of the variables, for example) that
seems reasonably consistent with the data. Please explain why you believe your model
may be a valid one.
1 144.2345992 4.370958447
2 19.2532018 2.435301829
3 17.4881601 3.363128411
4 95.3070282 3.632862605
5 21.5609028 3.404268323
6 19.0417205 2.893875484
7 73.7288413 4.511521997
8 17.1872164 2.905340962
9 166.088409 5.018423714
10 20.022695 2.937285901
11 73.1361943 4.304869654
12 208.6549137 5.286645393
13 3.9291444 1.611139299
14 11.8118429 2.721211233
15 7.6608973 2.866678664
16 31.3364994 3.635950398
17 11.6980475 2.715747079
18 5.4438693 0.343544579
19 0.8855689 0.559533071
20 80.5389932 4.320113346
21 7.0044725 2.693361406
22 1.6216979 1.218691566
23 18.0011175 2.828082644
24 41.1142646 4.214674699
25 133.5241225 4.895193461
26 10.54236 2.569530868
27 11.4260383 2.742730617
28 1.2516942 1.236836915
29 17.2484689 3.460097355
30 11.5856046 2.360005124
31 42.0668669 3.455450123
32 31.7660675 3.704837337
33 56.550552 4.035103522
34 19.1541317 2.391073625
35 68.3665038 3.504955123
36 2.0843029 1.282991321
37 8.6441363 2.215540992
38 15.6401544 2.149092406
39 1.4203844 0.58579235
40 20.2851251 3.036122607
41 23.6401125 3.2059986
42 8.9809278 2.638942701
43 34.3231905 3.758163236
44 9.5694213 2.273295173
45 4.1569621 1.631718956
46 54.028465 3.432818026
47 7.0154187 2.188606824
48 68.5468015 4.444101262
49 18.4854712 2.568553797
50 22.8160372 3.655647883
51 27.1554029 3.321925265
52 4.2223365 2.216161059
53 174.0447229 4.57572752
54 33.3172891 3.642899306
55 17.3890028 3.089760647
56 14.2595176 3.276550747
57 39.4647473 3.679288816
58 14.7271363 3.089832887
59 0.7711779 0.006909917
60 50.8418877 3.284882954
61 12.743259 2.632765357
62 14.1446912 3.185230565
63 38.9947557 3.581823727
64 67.9225183 4.399736827
65 13.0359994 2.272707941
66 151.2227017 4.302542632
67 17.1072417 3.33584812
68 71.2241002 4.038506099
69 52.6242793 3.920728568
70 64.6288531 3.720878163
71 6.3090934 1.956881061
72 27.8859547 2.909813613
73 15.6581294 3.623518162
74 18.0150245 2.046476642
75 17.9853974 2.457171185
76 33.3017019 3.580996498
77 20.982215 3.768178738
78 44.0476472 3.463767589
79 10.5467804 2.114223703
80 6.666142 1.900219101
81 98.3404026 4.51270701
82 19.4115248 3.257921438
83 26.3862646 3.088440229
84 20.6234882 2.879103462
85 5.2911807 1.805671105
86 18.9893552 3.611996898
87 22.9480867 2.782860154
88 22.0727012 2.817243294
89 33.6224175 3.933346329
90 20.5832786 3.821773111
91 89.5319609 4.392116376
92 10.4990218 2.523826077
93 43.6696963 3.650348561
94 42.2713361 4.391110456
95 4.0944234 1.889211121
96 14.6156788 2.139207413
97 7.9260022 1.868261319
98 6.2590585 1.540786
99 53.9251393 3.079982553
100 41.166098 3.65320434
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
