Question: In this assignment we consider data collected from the donor database of Blood Transfusion Service Center in Hsin-Chu City in Taiwan. The center passes their

In this assignment we consider data collected from the donor database of Blood Transfusion Service Center in Hsin-Chu City in Taiwan. The center passes their blood transfusion service bus to one university in Hsin-Chu City to gather blood donated about every three months. The current assignment involves data collected on a random sample of 748 donors. The data was obtained from the UCI Machine Learning Repository. This data was assembled by Prof. I-Cheng Yeh. The file "transfusion.csv" contains the data. The file contains 5 variables: recency = The number of months since the last donation. (numeric) frequency = The total number of donations. (numeric) monetary = Total blood donated (in c.c.). (numeric) time = The number of months since the first donation. (numeric) march2007 = An indicator. Indicates those that donated blood in March, 2007. (factor) In this assignment we consider the variables frequency and monetary. Descriptive Statistics Save the data set in your computer and read it into R. Compute the mean, median, the interquartile range, the standard deviation of the variable frequency and plot it's histogram. In Tasks 1-3 you are asked to describe the distribution of this variable on the basis of the computations and the plot. Estimating Parameters In Tasks 4-6 you are asked to estimate the expectation and standard deviation of the variable frequency. An estimator is used to estimate the expectation. This estimator has a standard deviation. You are required to estimate this standard error, which is the standard deviation of the estimator. You are required to describe which estimator was used for each estimation task. Estimating the MSE Consider the variable monetary. We assume that the distribution of this variable is Exponential() and are interested in the estimation of the parameter . The proposed estimator is 1/X, where X is the sample average. In Tasks 7-8 you are required to estimate the value of the parameter and estimate the mean square error (MSE) of the estimator. You may apply a method called The Bootstrap in order to estimate the MSE. The bootstrap method initiates by estimating the parameter . It proceeds with a simulation to compute the MSE, with equal to the value estimated from the provided data. For the assignment you should complete the following 8 tasks. Tasks 1-3 refer to the descriptive statistics problem presented above, Tasks 4-6 refer to the problem of estimating parameters and Tasks 7-8 refer to the task of estimating the parameter of an Exponential distribution and estimating the MSE of the estimators. Your answers should be short and clear. We recommend that you copy and paste the tasks below into the form titled "Submit your Assignment using this Form". You can then write you answers to the tasks in the designated positions that are marked in the text: Tasks Descriptive Statistics: 1. The distribution of the variable "frequency" is: __ Skewed to the left, __ Symmetric, __ Skewed to the right. Mark the most appropriate option and explain your selection 2. The number of outlier observations in the variable "frequency" is: _____. Explain each step in the computation of the number of outlier observations 3. Which of the following theoretical models is most appropriate to describe the distribution of the variable "frequency"? __ Binomial, __ Poisson, __ Uniform, __ Exponential, __ Normal. Mark the most appropriate option and explain your selection Estimating Parameters: 4. The estimated value of the expectation of the measurement "frequency" is:_____. Explain your answer 5. The estimated value of the standard deviation of the measurement "frequency" is:_____. Explain your answer 6. The estimated value of the standard deviation of the estimator that produced the estimate in 4. is:_____. Explain your answer Estimating the MSE: 7. The estimated value of for the variable "monetary" is:____. Attach the R code for conducting the computation 8. The estimated value of the MSE of the estimator of is:____. Attach the R code for conducting the computation recency frequency monetary time march2007 2 50 12500 98 yes 0 13 3250 28 yes 1 16 4000 35 yes 2 20 5000 45 yes 1 24 6000 77 no 4 4 1000 4 no 2 7 1750 14 yes 1 12 3000 35 no 2 9 2250 22 yes 5 46 11500 98 yes 4 23 5750 58 no 0 3 750 4 no 2 10 2500 28 yes 1 13 3250 47 no 2 6 1500 15 yes 2 5 1250 11 yes 2 14 3500 48 yes 2 15 3750 49 yes 2 6 1500 15 yes 2 3 750 4 yes 2 3 750 4 yes 4 11 2750 28 no 2 6 1500 16 yes 2 6 1500 16 yes 9 9 2250 16 no 4 14 3500 40 no 4 6 1500 14 no 4 12 3000 34 yes 4 5 1250 11 yes 4 8 2000 21 no 1 14 3500 58 no 4 10 2500 28 yes 4 10 2500 28 yes 4 9 2250 26 yes 2 16 4000 64 no 2 8 2000 28 yes 2 12 3000 47 yes 4 6 1500 16 yes 2 14 3500 57 yes 4 7 1750 22 yes 2 13 3250 53 yes 2 5 1250 16 no 2 5 1250 16 yes 2 5 1250 16 no 4 20 5000 69 yes 4 9 2250 28 yes 2 9 2250 36 no 2 2 500 2 no 2 2 500 2 no 2 2 500 2 no 2 11 2750 46 no 2 11 2750 46 yes 2 6 1500 22 no 2 12 3000 52 no 4 5 1250 14 yes 4 19 4750 69 yes 4 8 2000 26 yes 2 7 1750 28 yes 2 16 4000 81 no 3 6 1500 21 no 2 7 1750 29 no 2 8 2000 35 yes 2 10 2500 49 no 4 5 1250 16 yes 2 3 750 9 yes 3 16 4000 74 no 2 4 1000 14 yes 0 2 500 4 no 4 7 1750 25 no 1 9 2250 51 no 2 4 1000 16 no 2 4 1000 16 no 4 17 4250 71 yes 2 2 500 4 no 2 2 500 4 yes 2 2 500 4 yes 2 4 1000 16 yes 2 2 500 4 no 2 2 500 4 no 2 2 500 4 no 4 6 1500 23 yes 2 4 1000 16 no 2 4 1000 16 no 2 4 1000 16 no 2 6 1500 28 yes 2 6 1500 28 no 4 2 500 4 no 4 2 500 4 no 4 2 500 4 no 2 7 1750 35 yes 4 2 500 4 yes 4 2 500 4 no 4 2 500 4 no 4 2 500 4 no 12 4 3 4 4 5 4 2 4 2 2 6 0 3 2 2 4 4 4 4 2 11 2 4 1 2 2 4 2 2 2 2 4 2 4 2 4 2 2 4 2 2 2 2 9 2 2 5 4 4 4 4 6 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 11 4 4 2 4 10 2 4 13 11 4 4 8 11 7 17 9 4 7 8 13 9 5 5 17 8 5 3 10 5 9 5 8 12 24 7 11 7 11 3 5 6 5 4 5 8 4 8 2 5 12 2 6 11 3 5 12 5 2 9 14 3 3 2 3 3 2 2 2 7 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 4 5 6 3 4 4 4 12 8 9 5 4 15 2750 1750 4250 2250 1000 1750 2000 3250 2250 1250 1250 4250 2000 1250 750 2500 1250 2250 1250 2000 3000 6000 1750 2750 1750 2750 750 1250 1500 1250 1000 1250 2000 1000 2000 500 1250 3000 500 1500 2750 750 1250 3000 1250 500 2250 3500 750 750 500 750 750 500 500 500 1750 1500 2750 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 2500 1000 1250 1500 750 1000 1000 1000 3000 2000 2250 1250 1000 3750 23 no 28 no 86 no 38 yes 14 yes 26 yes 34 yes 76 yes 40 no 26 no 26 no 70 no 59 no 26 no 14 no 64 no 23 yes 46 no 23 no 40 yes 82 no 64 no 46 yes 61 no 57 no 79 yes 16 yes 26 yes 41 yes 33 yes 26 no 34 no 46 yes 26 no 48 yes 10 yes 28 no 95 no 10 no 35 no 88 no 19 no 37 no 98 no 19 no 11 no 74 no 86 no 16 no 16 no 9 yes 16 yes 14 no 11 no 11 yes 11 no 58 yes 39 no 78 no 2 yes 2 no 2 no 2 no 2 no 2 no 2 no 2 no 2 no 2 no 2 yes 2 yes 2 yes 2 no 2 no 2 no 2 no 2 no 2 no 2 no 2 no 2 no 35 no 16 yes 33 yes 41 yes 22 no 26 yes 16 no 35 no 88 no 26 no 33 no 34 no 26 no 77 no 4 4 4 2 11 2 2 9 4 11 9 4 4 6 4 11 11 2 2 11 11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 10 14 8 11 4 2 8 8 11 4 11 9 4 11 7 11 11 11 2 11 11 12 2 16 11 4 12 4 11 2 2 4 4 3 11 4 13 16 16 7 4 4 4 14 4 14 11 14 14 14 8 5 7 7 4 11 2 5 8 6 7 9 6 7 2 7 9 6 2 7 6 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 8 7 10 3 2 4 9 8 22 3 17 2 5 12 12 2 2 2 6 8 3 13 3 8 7 3 12 4 14 2 3 5 4 2 8 7 4 11 7 2 5 5 4 13 3 18 8 16 4 5 2 1250 1750 1750 1000 2750 500 1250 2000 1500 1750 2250 1500 1750 500 1750 2250 1500 500 1750 1500 750 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 750 250 250 250 250 250 2000 1750 2500 750 500 1000 2250 2000 5500 750 4250 500 1250 3000 3000 500 500 500 1500 2000 750 3250 750 2000 1750 750 3000 1000 3500 500 750 1250 1000 500 2000 1750 1000 2750 1750 500 1250 1250 1000 3250 750 4500 2000 4000 1000 1250 500 35 yes 52 no 52 no 35 no 42 no 14 no 47 yes 38 yes 47 no 29 no 45 no 52 no 58 no 11 yes 58 no 38 no 26 no 16 no 76 no 27 no 14 no 4 no 4 no 4 no 4 no 4 no 4 yes 4 no 4 no 4 no 4 no 4 no 4 yes 4 yes 4 no 4 yes 4 yes 4 no 24 no 4 no 4 no 4 no 4 yes 4 no 39 no 26 no 63 no 15 no 14 no 43 no 58 no 52 yes 98 no 25 yes 79 yes 11 no 46 no 58 no 86 no 11 no 11 no 11 no 75 no 41 yes 16 yes 59 no 35 no 28 no 37 no 28 no 58 no 41 no 73 yes 23 no 38 yes 58 no 43 yes 23 no 46 no 82 no 21 no 40 no 28 no 16 no 58 no 58 no 46 no 57 no 34 no 78 no 48 no 70 no 22 yes 26 no 16 no 11 11 4 9 14 14 14 16 11 11 11 2 14 14 14 14 14 14 14 2 14 11 4 11 16 16 11 11 12 9 9 4 11 14 11 11 15 9 11 14 16 14 2 14 14 16 14 16 16 11 16 16 11 11 11 9 14 23 11 11 11 11 11 11 11 11 11 11 11 11 16 4 16 14 9 21 14 11 4 21 11 14 23 14 11 16 4 14 4 9 14 11 14 14 14 5 2 2 2 5 3 4 12 4 5 5 4 5 2 2 2 2 2 2 3 6 5 5 3 4 3 5 2 9 1 1 2 2 4 9 5 16 5 4 8 7 2 2 16 4 7 7 6 6 7 2 3 3 7 1 3 4 38 6 1 1 1 1 1 1 1 1 2 5 2 4 2 6 3 2 16 6 2 3 13 6 2 15 4 2 5 2 3 2 4 4 3 5 1 1 1250 500 500 500 1250 750 1000 3000 1000 1250 1250 1000 1250 500 500 500 500 500 500 750 1500 1250 1250 750 1000 750 1250 500 2250 250 250 500 500 1000 2250 1250 4000 1250 1000 2000 1750 500 500 4000 1000 1750 1750 1500 1500 1750 500 750 750 1750 250 750 1000 9500 1500 250 250 250 250 250 250 250 250 500 1250 500 1000 500 1500 750 500 4000 1500 500 750 3250 1500 500 3750 1000 500 1250 500 750 500 1000 1000 750 1250 250 250 33 no 14 no 23 no 16 yes 28 yes 19 yes 23 yes 50 no 28 no 35 no 35 no 70 no 28 no 14 no 14 no 14 no 14 no 14 no 14 no 52 no 34 no 37 yes 74 no 23 no 23 no 19 no 38 no 16 no 60 no 9 no 9 no 29 no 17 no 26 no 72 yes 41 no 82 no 51 yes 34 no 50 yes 38 no 16 no 41 no 98 no 28 yes 39 no 47 no 35 no 35 yes 62 yes 16 no 21 yes 28 no 64 no 11 yes 34 no 30 no 98 no 58 no 11 no 11 no 11 no 11 no 11 no 11 no 11 no 11 no 21 no 50 no 21 no 28 no 41 no 40 no 26 no 26 no 64 no 51 no 24 no 71 no 57 no 71 no 21 yes 57 no 38 no 26 no 40 yes 51 yes 31 no 52 no 65 no 40 no 40 yes 50 no 14 no 14 no 14 14 14 14 14 14 14 14 14 9 14 11 11 4 11 16 16 21 21 16 21 18 23 23 16 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 21 16 21 21 14 16 23 14 23 16 9 9 16 14 14 16 21 14 23 18 16 11 11 11 23 21 23 23 23 16 23 21 23 21 21 21 21 21 21 21 21 21 21 21 21 21 23 21 22 11 23 23 23 14 1 1 1 1 1 1 7 1 1 3 7 4 4 2 4 4 10 2 3 8 3 2 5 8 3 5 3 1 1 1 1 1 1 1 4 1 1 1 1 1 2 2 2 2 2 4 5 2 5 3 3 2 2 7 4 2 7 2 3 14 8 3 3 2 3 12 3 2 2 8 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 5 4 4 1 2 5 3 3 3 250 250 250 250 250 250 1750 250 250 750 1750 1000 1000 500 1000 1000 2500 500 750 2000 750 500 1250 2000 750 1250 750 250 250 250 250 250 250 250 1000 250 250 250 250 250 500 500 500 500 500 1000 1250 500 1250 750 750 500 500 1750 1000 500 1750 500 750 3500 2000 750 750 500 750 3000 750 500 500 2000 750 750 750 500 250 250 250 250 250 250 250 250 250 250 250 250 1250 1000 1000 250 500 1250 750 750 750 14 no 14 no 14 no 14 no 14 no 14 no 72 no 14 no 14 no 52 no 73 no 58 no 59 no 59 no 61 no 40 no 89 no 21 yes 26 no 76 no 26 yes 23 no 33 no 46 no 34 no 64 no 41 no 16 no 16 no 16 no 16 no 16 no 16 no 16 no 45 no 16 no 16 no 16 no 16 no 16 no 26 no 23 no 27 no 23 no 23 no 57 no 60 no 23 no 74 no 28 no 40 no 52 no 52 no 87 yes 64 no 35 no 93 no 25 no 52 no 93 no 95 no 46 no 76 no 52 no 76 no 86 no 35 no 26 no 26 no 64 no 50 no 33 no 38 no 28 no 21 no 21 no 21 no 21 no 21 no 21 no 21 no 21 no 21 no 21 yes 21 no 21 no 60 no 45 no 52 no 22 yes 70 no 58 no 40 no 41 no 83 no 21 26 23 23 23 23 23 23 23 23 23 23 21 23 21 21 16 21 23 23 23 35 38 38 40 74 2 6 2 2 0 2 3 2 2 2 4 2 2 3 4 4 3 4 3 4 2 2 4 1 4 2 2 2 5 2 4 2 4 2 2 4 2 2 2 2 2 2 4 4 1 4 7 2 2 4 4 2 4 2 2 4 5 4 14 3 4 4 4 7 4 2 4 4 4 2 5 6 1 1 1 1 1 1 1 1 4 6 3 2 3 2 3 4 3 2 3 1 1 1 1 43 22 34 44 26 41 21 11 21 13 4 11 11 14 16 6 5 33 10 10 11 11 13 10 9 4 5 15 24 6 5 4 8 4 6 5 7 6 8 2 6 10 16 2 14 2 14 3 12 7 4 6 6 3 4 4 6 6 5 8 11 9 16 10 14 9 6 9 6 500 1250 1500 250 250 250 250 250 250 250 250 1000 1500 750 500 750 500 750 1000 750 500 750 250 250 250 250 10750 5500 8500 11000 6500 10250 5250 2750 5250 3250 1000 2750 2750 3500 4000 1500 1250 8250 2500 2500 2750 2750 3250 2500 2250 1000 1250 3750 6000 1500 1250 1000 2000 1000 1500 1250 1750 1500 2000 500 1500 2500 4000 500 3500 500 3500 750 3000 1750 1000 1500 1500 750 1000 1000 1500 1500 1250 2000 2750 2250 4000 2500 3500 2250 1500 2250 1500 35 no 49 yes 70 no 23 no 23 no 23 no 23 no 23 no 23 no 23 no 23 no 53 no 86 no 48 no 41 no 64 no 70 no 70 no 87 no 89 no 87 no 64 no 38 no 38 no 40 no 74 no 86 yes 28 yes 77 yes 98 no 76 yes 98 yes 42 yes 23 no 52 yes 32 yes 4 yes 26 no 28 no 35 no 38 yes 14 no 12 yes 98 yes 33 yes 28 yes 40 yes 41 yes 39 yes 43 yes 28 no 11 no 16 yes 64 no 79 no 22 yes 16 yes 14 yes 28 no 14 no 26 no 16 yes 32 yes 26 yes 38 yes 4 yes 28 yes 52 no 70 yes 4 yes 95 no 4 yes 48 no 11 no 70 yes 32 yes 16 no 35 yes 28 yes 14 no 23 no 18 no 28 no 30 no 14 no 50 no 64 yes 52 no 98 yes 47 no 86 no 75 no 35 no 55 no 35 yes 2 2 4 2 2 2 4 3 9 11 2 2 2 2 2 2 2 2 2 2 2 2 11 2 9 5 3 3 4 2 12 2 4 9 14 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 11 13 7 9 11 2 7 8 2 6 12 13 11 4 14 11 7 11 7 11 10 14 14 14 2 11 14 9 16 14 4 14 16 4 14 11 14 15 16 16 11 6 6 2 2 2 2 6 4 9 5 3 1 1 1 1 1 1 1 1 1 1 1 11 3 11 11 5 1 6 3 11 2 6 3 8 2 11 7 7 1 1 1 1 1 1 1 1 1 1 1 1 7 1 4 6 3 5 9 2 5 11 9 2 3 15 3 16 5 7 4 9 8 5 6 5 2 2 2 2 3 8 1 5 4 2 3 16 2 8 3 7 5 2 3 8 1500 1500 500 500 500 500 1500 1000 2250 1250 750 250 250 250 250 250 250 250 250 250 250 250 2750 750 2750 2750 1250 250 1500 750 2750 500 1500 750 2000 500 2750 1750 1750 250 250 250 250 250 250 250 250 250 250 250 250 1750 250 1000 1500 750 1250 2250 500 1250 2750 2250 500 750 3750 750 4000 1250 1750 1000 2250 2000 1250 1500 1250 500 500 500 500 750 2000 250 1250 1000 500 750 4000 500 2000 750 1750 1250 500 750 2000 45 no 47 no 9 no 11 yes 11 no 11 yes 38 yes 29 yes 38 no 18 no 21 no 2 no 2 yes 2 no 2 no 2 no 2 no 2 yes 2 no 2 no 2 no 2 no 38 no 22 no 49 yes 75 no 38 no 3 yes 43 no 24 no 39 no 14 no 46 no 14 no 26 no 13 no 95 no 77 no 77 no 4 no 4 no 4 no 4 no 4 yes 4 no 4 no 4 no 4 no 4 no 4 yes 4 no 62 no 4 no 34 yes 28 no 14 yes 35 no 54 no 11 no 63 no 89 no 64 no 22 no 26 no 71 no 16 no 89 no 58 no 35 no 27 no 89 yes 52 yes 52 no 41 no 38 no 14 yes 14 no 14 no 33 no 23 no 46 no 9 no 27 no 26 no 30 no 21 no 77 no 31 no 50 no 26 no 45 no 33 no 16 no 21 no 72 no 11 11 11 11 11 2 2 16 16 16 16 16 14 23 11 14 20 4 11 11 16 21 13 16 14 14 14 14 14 14 14 17 14 14 16 21 16 16 16 16 16 16 14 11 11 21 23 23 14 16 16 16 21 21 21 23 21 23 21 23 21 21 25 21 21 23 21 14 23 23 23 23 23 23 23 23 23 23 16 23 21 23 39 72 1 1 1 1 1 3 3 4 15 14 10 3 3 19 7 3 14 2 2 3 4 7 7 6 3 1 1 1 1 1 1 7 3 3 7 2 3 1 1 1 1 1 2 4 2 6 2 6 2 6 4 5 2 3 3 8 3 3 3 2 1 1 6 1 1 3 2 3 1 1 1 1 1 1 1 4 1 7 3 2 2 3 1 1 250 250 250 250 250 750 750 1000 3750 3500 2500 750 750 4750 1750 750 3500 500 500 750 1000 1750 1750 1500 750 250 250 250 250 250 250 1750 750 750 1750 500 750 250 250 250 250 250 500 1000 500 1500 500 1500 500 1500 1000 1250 500 750 750 2000 750 750 750 500 250 250 1500 250 250 750 500 750 250 250 250 250 250 250 250 1000 250 1750 750 500 500 750 250 250 11 no 11 no 11 no 11 yes 11 no 75 yes 77 no 28 no 87 no 83 no 62 no 23 no 26 no 62 no 75 no 28 no 69 yes 46 no 25 no 37 no 33 no 38 no 76 no 50 no 33 no 14 no 14 no 14 no 14 no 14 no 14 no 58 yes 35 no 35 no 64 no 21 no 35 no 16 no 16 no 16 no 16 no 16 no 29 no 74 no 38 yes 48 no 23 no 45 no 35 yes 81 no 58 no 71 no 26 no 35 no 35 no 69 no 38 no 35 no 40 no 28 no 21 no 21 no 50 no 21 no 21 no 39 no 33 no 79 no 23 yes 23 no 23 no 23 no 23 no 23 no 23 no 52 no 23 no 88 no 86 no 38 no 52 no 62 no 39 no 72 no

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!