Question: In this assignment, we use Matlab to build an FM modulator and demodulator. The Matlab program is given by ExampleFM.m on page 292 of the

In this assignment, we use Matlab to build an FM modulator and demodulator. The Matlab program is given by ExampleFM.m on page 292 of the textbook. The modulating signal m(t) is triangular with amplitude (-1, +1). Run a slightly modified version of the Matlab program to generate:

The modulating signal m(t)

The FM modulated signal

The amplitude spectrum of the FM signal

The demodulated signal

The original (unmodified) Matlab program ExampleFM.m is reproduced below:

% (ExampleFM.m)

% This program uses triangl.m to illustrate frequency modulation

% and demodulation

ts=1.e-4;

t=-0.04:ts:0.04;

Ta=0.01;

m_sig=triangl((t+0.01)/Ta)-triangl((t-0.01)/Ta);

Lfft=length(t); Lfft=2ceil(log2(Lfft));

M_fre=fftshift(fft(m_sig,Lfft));

freqm=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

B_m=100; %Bandwidth of the signal is B_m Hz.

% Design a simple lowpass filter with bandwidth B_m Hz.

h=fir1(80,[B_m*ts]);

%

kf=160*pi;

m_intg=kf*ts*cumsum(m_sig);

s_fm=cos(2*pi*300*t+m_intg);

s_pm=cos(2*pi*300*t+pi*m_sig);

Lfft=length(t); Lfft=2ceil(log2(Lfft)+1);

S_fm=fftshift(fft(s_fm,Lfft));

S_pm=fftshift(fft(s_pm,Lfft));

freqs=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

s_fmdem=diff([s_fm(1) s_fm])/ts/kf;

s_fmrec=s_fmdem.*(s_fmdem>0);

s_dec=filter(h,1,s_fmrec);

% Demodulation

% Using an ideal LPF with bandwidth 200 Hz

Trange1=[-0.04 0.04 -1.2 1.2];

figure(1)

subplot(211);m1=plot(t,m_sig);

axis(Trange1); set(m1,Linewidth,2);

xlabel({\it t} (sec)); ylabel({\it m}({\it t}));

title(Message signal);

subplot(212);m2=plot(t,s_dec);

set(m2,Linewidth,2);

xlabel({\it t} (sec)); ylabel({\it m}_d({\it t}))

title(demodulated FM signal);

figure(2)

subplot(211);td1=plot(t,s_fm);

axis(Trange1); set(td1,Linewidth,2);

xlabel({\it t} (sec)); ylabel({\it s}_{ m FM}({\it t}))

title(FM signal);

subplot(212);td2=plot(t,s_pm);

axis(Trange1); set(td2,Linewidth,2);

xlabel({\it t} (sec)); ylabel({\it s}_{ m PM}({\it t}))

title(PM signal);

figure(3)

subplot(211);fp1=plot(t,s_fmdem);

set(fp1,Linewidth,2);

xlabel({\it t} (sec)); ylabel({\it d s}_{ m FM}({\it t})/dt)

title(FM derivative);

subplot(212);fp2=plot(t,s_fmrec);

set(fp2,Linewidth,2);

xlabel({\it t} (sec));

title(rectified FM derivative);

Frange=[-600 600 0 300];

figure(4)

subplot(211);fd1=plot(freqs,abs(S_fm));

axis(Frange); set(fd1,Linewidth,2);

xlabel({\it f} (Hz)); ylabel({\it S}_{ m FM}({\it f}))

title(FM amplitude spectrum);

subplot(212);fd2=plot(freqs,abs(S_pm));

axis(Frange); set(fd2,Linewidth,2);

xlabel({\it f} (Hz)); ylabel({\it S}_{ m PM}({\it f}))

title(PM amplitude spectrum);

PLEASE INCLUDE PLOTS FROM MATLAB (PLEASE)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!