Question: Interpretaton # Make predictions y_pred = model.predict(X_test) # Evaluate the model print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) [[ 496 0] [ 0 2543]] precision recall f1-score support
Interpretaton # Make predictions y_pred = model.predict(X_test) # Evaluate the model print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) [[ 496 0] [ 0 2543]] precision recall f1-score support 0 1.00 1.00 1.00 496 1 1.00 1.00 1.00 2543 accuracy 1.00 3039 macro avg 1.00 1.00 1.00 3039 weighted avg 1.00 1.00 1.00 3039
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
