Question: k2. Let A = ???03a301a17??? with an arbitrary real value. So from the following statements:I. The sum of the geometric multiplicities of the proper spaces

k2. Let A = ???03a301a17??? with an arbitrary real value. So from the following statements:I. The sum of the geometric multiplicities of the proper spaces of A is 3 for any value of a.II. The matrix is ??is orthogonally diagonalizable for any value of a,III. All eigenvalues ??of A are real.IV. The characteristic polynomial could have an irreducible quadratic factor in the reals for some value of a. It can be affirmed WITH CERTAINTY that they are trueSelect one:II, III, IV are trueOnly II is trueOnly II and III are true I, II and III are true

k2. Let A = ???03a301a17??? with an arbitrary
3 a Sea A = 3 0 con a un valor real arbitrario . Entonces de las siguientes afirmaciones: 1 7 I. La suma de las multiplicidades geometricas de los espacios propios de A es 3 para cualquier valor de a. Il. La matriz es es diagonalizable ortogonalmente para cualquier valor de a, Ill. Todos los valores propios de A son reales. IV. El polinomio caracteristico podria tener un factor cuadratico irreducible en los reales para algun valor de a. Se puede afirmar CON CERTEZA que son verdaderas Seleccione una: O II, III, IV son verdaderas O Solo ll es verdadera O Solo Il y Ill son verdaderas O I, ll y Ill son verdaderas

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!