Question: Let be the real sequence {xn} fixed by X1 = 1, Xn + 1 =(7xn + 4) / 8, n = 1, 2, 3 ,.
Let be the real sequence {xn} fixed by X1 = 1, Xn + 1 =(7xn + 4) / 8, n = 1, 2, 3 ,. . . Determine (with justification) whether this sequence converges or diverges. If it converges, determine (again with justification) its limite. French version : Soit la suite relle {xn} dfinie par X1 = 1, Xn+1 = (7xn + 4)/8 , n = 1, 2, 3, . . . Dterminer (avec justification) si cette suite converge ou diverge. Si elle converge, dterminer (encore avec justification) sa limite
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
