Question: Let f:x->Y be a function, let A and B be subsets of x , and let C and D be cubsets of Y . Prove
Let
f:x->Ybe a function, let
Aand
Bbe subsets of
x, and let
Cand
Dbe cubsets of
Y. Prove that\ (a)
f(A\\\\cup B)-f(A)\\\\cup f(B)\ (b)
f(A\\\\cap B)subf(A)\\\\cap f(B)\ (c)
f^(-1)(C\\\\cup D)=f^(-1)(C)\\\\cup f^(-1)(D)\ (d)
f^(-1)(C\\\\cap D)=f^(-1)(C)\\\\cap f^(-1)(D)\ (e)
f^(-1)(f(A))supA\ (D)
f(f^(-1)(C))subC.

7. Let f:XY be a function, let A and B be subsets of X, and let C and D be subsets of Y. Prove that (a) f(AB)=f(A)f(B) (b) f(AB)f(A)f(B) (c) f1(CD)=f1(C)f1(D) (d) f1(CD)=f1(C)f1(D) (e) f1(f(A))A (I) f(f1(C))C
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
