Question: Let $mathrm{X}$ and $mathrm{Y}$ be independent exponential random variables with common parameter $lambda$. If $2=mathrm{X}+3 mathrm{Y}$ and $w=3 mathrm{X}+mathrm{Y} $, find the } joint pdf

 Let $\mathrm{X}$ and $\mathrm{Y}$ be independent exponential random variables with common

Let $\mathrm{X}$ and $\mathrm{Y}$ be independent exponential random variables with common parameter $\lambda$. If $2=\mathrm{X}+3 \mathrm{Y}$ and $w=3 \mathrm{X}+\mathrm{Y} $, find the } joint pdf of $CZ, W$. Lutfen birini secin: a. $f_(Z W) (z, W=- \frac{\lambda^{2}}{8} ec- \frac{\lambda(z+w) }{4}}$ b. $f_CZ W (z, w=\frac{\lambda^{2}}{8} ^{- ent \frac{\lambda (x+w)}{4}}$ c. $f_{Z W (z, \\2]] w)=\frac{\lambda 2] } [8] - ent- \lambda (z+w)}$ d. $F_{2 W (z, w)=8 \lambda (2) e^{-\frac{\lambda(z+w)}{4}}$ ef $f_CZ W CZ, w=\frac{\lambda^{2}}{B} ^{- ent- \frac{\lambda (x+2 w) }{4}}$ SP. SD.009

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!