Question: Let X1, . . . , Xn be a random sample where Xi N(, 2 ). Define the random sequence Yn = X n =
Let X1, . . . , Xn be a random sample where Xi N(, 2 ). Define the random sequence Yn = X n = 1 n Xn i=1 Xi . The purpose of this exercise is to demonstrate that Yn converges in distribution
(a) Show that the CDF of Yn is Gn(y) = n(y ) , where is the CDF of the standard normal distribution.
(b)Show that G(y) = limn Gn(y) = 0 if y < , 1/2 if y = , 1, if y >
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
