Question: Machine Learning SVM Hyperparameter Tuning You May import any type of data you want. 1. Using GridSearchCV, determine the best choice of hyperparameters out of

Machine Learning

SVM Hyperparameter Tuning

You May import any type of data you want.

1. Using GridSearchCV, determine the best choice of hyperparameters out of the following possible values:

Kernel type: Linear, radial basis function

Box constraint (C): [1, 5, 10, 20]

Kernel width (gamma): 'auto','scale'

2. Report the time required to perform cross-validation via GridSearchCV. Report the mean and standard deviation of the performance metrics for the best performing model along with its associated hyperparameters. You may use the function collate_ht_results for this purpose.

Code::

#Summarizes model performance results produced during hyperparameter tuning

def collate_ht_results(ht_results,metric_keys=metric_keys,display=True):

ht_stats=dict()

for metric in metric_keys:

ht_stats[metric+"_mean"] = ht_results.cv_results_["mean_test_"+metric][ht_results.best_index_]

ht_stats[metric+"_std"] = metric_std = ht_results.cv_results_["std_test_"+metric][ht_results.best_index_]

if display:

print("test_"+metric,ht_stats[metric+"_mean"],"("+str(ht_stats[metric+"_std"])+")")

return ht_stats

UPDATE::

You can use any data set. if you need, 3 choices

#generate random data

rows, cols = 50, 5

r = np.random.RandomState(0)

y = r.randn(rows)

X = r.randn(rows, cols)

----------------------------------------

from sklearn import datasets

# FEATCHING FEATURES AND TARGET VARIABLES IN ARRAY FORMAT.

cancer = datasets.load_breast_cancer()

# Input_x_Features.

x = cancer.data

# Input_ y_Target_Variable.

y = cancer.target

# Feature Scaling for input features.

scaler = preprocessing.MinMaxScaler()

x_scaled = scaler.fit_transform(x)

---------------------------------------------

import numpy as np
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) y = np.array([0, 0, 1, 1])

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Accounting Questions!