Question: mc = dtmc with properties: P: [ 4 times 4 double ] StateNames: [ 1 2 3

mc =
dtmc with properties:
P: [4\times 4 double]
StateNames: ["1""2""3""4"]
NumStates: 4
numstates =
4
ans =4\times 4
0.930.050.010.01
0.80.1900.01
0.800.190.01
0.8000.2
ans =4\times 1
1
1
1
1
V =4\times 4
-0.997934881713096-0.7620007620011435.66443394712972e-16-1.39119240904919e-16
-0.06160091862426520.635000635000953-0.635000635000953-0.814593350389704
-0.0123201837248530.127000127000191-0.1270001270001910.45554867127437
-0.0133981998007777-2.4456211683764e-160.7620007620011430.359044679115334
D =4\times 4
1000
00.1300
000.190
0000.19
E =1\times 4
0.9195402298850570.05676174258549740.01135234851709950.0123456790123457
ans =1\times 4
0.9195402298850580.05676174258549740.01135234851709950.0123456790123457
ss =1\times 4
0.9195402298850570.05676174258549730.01135234851709960.0123456790123458
ans =
1
Steady-State Probabilities:
State Probability
Up 0.91954
noprod 0.05676
nocust 0.01135
Down 0.01235
Ws: 1.605
Wq: -0.395
c_util: 0.528
p_drop: -0.05658
State Probabilities:
p_state(1): -0.010609, p_state(2): -0.021217, p_state(3): -0.021217, p_state(4): -0.014145, p_state(5): -0.007072, p_state(6): -0.056580,
Index exceeds the number of array elements. Index must not exceed 6.
pd =
PoissonDistribution
Poisson distribution
lambda =0.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!