Question: Model Summary - mpg Model R R Adjusted R RMSE R Change F Change df1 df2 p 1 0.000 0.000 0.000 4.294 0.000 0 152

Model Summary - mpg
Model R R Adjusted R RMSE R Change F Change df1 df2 p
1 0.000 0.000 0.000 4.294 0.000 0 152
2 0.818 0.670 0.668 2.476 0.670 306.273 1 151 <.001
3 0.840 0.705 0.701 2.348 0.035 17.825 1 150 <.001
4 0.857 0.734 0.728 2.238 0.029 16.125 1 149 <.001
5 0.865 0.749 0.742 2.180 0.015 9.064 1 148 0.003

ANOVA
Model Sum of Squares df Mean Square F p
2 Regression 1877.288 1 1877.288 306.273 <.001
Residual 925.549 151 6.129
Total 2802.837 152
3 Regression 1975.593 2 987.796 179.112 <.001
Residual 827.244 150 5.515
Total 2802.837 152
4 Regression 2056.374 3 685.458 136.823 <.001
Residual 746.463 149 5.010
Total 2802.837 152
5 Regression 2099.452 4 524.863 110.437 <.001
Residual 703.385 148 4.753
Total 2802.837 152
Note.The intercept model is omitted, as no meaningful information can be shown.

Coefficients
Collinearity Statistics
Model Unstandardized Standard Error Standardized t p Tolerance VIF
1 (Intercept) 23.856 0.347 68.718 <.001
2 (Intercept) 42.558 1.087 39.144 <.001
curb_wgt -5.538 0.316 -0.818 -17.501 <.001 1.000 1.000
3 (Intercept) 42.516 1.031 41.224 <.001
curb_wgt -3.358 0.597 -0.496 -5.622 <.001 0.253 3.959
fuel_cap -0.408 0.097 -0.373 -4.222 <.001 0.253 3.959
4 (Intercept) 41.242 1.033 39.927 <.001
curb_wgt -2.064 0.654 -0.305 -3.154 0.002 0.191 5.229
fuel_cap -0.398 0.092 -0.364 -4.320 <.001 0.252 3.962
engine_s -1.074 0.267 -0.262 -4.016 <.001 0.421 2.377
5 (Intercept) 33.804 2.667 12.673 <.001
curb_wgt -2.534 0.656 -0.374 -3.862 <.001 0.180 5.544
fuel_cap -0.415 0.090 -0.379 -4.619 <.001 0.251 3.978
engine_s -1.172 0.263 -0.286 -4.464 <.001 0.414 2.414
length 0.052 0.017 0.161 3.011 0.003 0.592 1.689
Note.The following covariates were considered but not included: horsepow, wheelbas, width.

Descriptives
N Mean SD SE
mpg 153 23.856 4.294 0.347
engine_s 153 3.050 1.046 0.085
horsepow 153 185.072 56.729 4.586
wheelbas 153 107.410 7.693 0.622
width 153 71.086 3.453 0.279
length 153 187.092 13.433 1.086
curb_wgt 153 3.377 0.635 0.051
fuel_cap 153 17.954 3.925 0.317

Collinearity Diagnostics
Variance Proportions
Model Dimension Eigenvalue Condition Index (Intercept) engine_s length curb_wgt fuel_cap
2 1 1.983 1.000 0.009 0.009
2 0.017 10.771 0.991 0.991
3 1 2.970 1.000 0.004 0.001 0.001
2 0.025 10.827 0.869 0.027 0.123
3 0.005 23.993 0.127 0.972 0.876
4 1 3.923 1.000 0.002 0.003 0.000 0.001
2 0.054 8.489 0.226 0.477 0.000 0.001
3 0.018 14.861 0.550 0.367 0.023 0.302
4 0.005 29.517 0.222 0.153 0.976 0.696
5 1 4.909 1.000 0.000 0.002 0.000 0.000 0.000
2 0.065 8.682 0.017 0.395 0.006 0.000 0.001
3 0.020 15.846 0.028 0.435 0.010 0.031 0.302
4 0.005 33.010 0.025 0.147 0.000 0.927 0.696
5 0.002 51.785 0.929 0.021 0.984 0.042 0.001
Note.The intercept model is omitted, as no meaningful information can be shown.

Based on the above results answer the following questions:

  1. Determine the best fitted regression model.
  2. Write the equation of the regression model (best -fit model) and interpret all the Beta coefficients.
  3. Interpret the ANOVA for regression fit.
  4. Determine and interpret the coefficient of determination r2.
  5. What can we conclude about the relationship of the dependent and predictor variables?

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!