Question: Need solutions 1. If f(x) = sin (x), find f a. 0 C. b. 1 d. 2. If f(x) = Sin X find f *

 Need solutions 1. If f(x) = sin (x), find f a.0 C. b. 1 d. 2. If f(x) = Sin X findf * COS X a. 1 C. b. -2 d. 2 3.Find the slope of the tangent to the curve y = 2sin'x at x = a. C. -1 b. 3 d. 4. Find

Need solutions

the slope of the tangent to the curve y = 3x cosx at X = I. a. -3 C. 3 b. 0 d.6 5. Find the slope of the tangent to the curve y= 4 sin 2x at x = a. -3 C. 31/3 2b. 6 d. 9 6. Ify = 2 cos x + sin

1. If f(x) = sin (x), find f a. 0 C. b. 1 d. 2. If f(x) = Sin X find f * COS X a. 1 C. b. -2 d. 2 3. Find the slope of the tangent to the curve y = 2 sin'x at x = a. C. -1 b. 3 d. 4. Find the slope of the tangent to the curve y = 3x cos x at X = I. a. -3 C. 3 b. 0 d. 6 5. Find the slope of the tangent to the curve y = 4 sin 2x at x = a. -3 C. 31/3 2 b. 6 d. 9 6. Ify = 2 cos x + sin 2x, find y" at x = a. N C. b. -67. Ify = 2 sinx - cos x, find y" at x = a. 1+ 3 C. 1-2-3 2 2 b. 1- /3 d. 1+2 43 2 2 8. Ify = sin 3x 9 , find y" at x = a. 1 C. 0 b. -1 d. 2 9. Find the slope of the tangent to y = 1 - 2 sin x at the point where x = a. c. 2 b. -1 d. -2 10. If f(x) = sin 3x, find a. 3 C. 9 b. -3 d. -9 11. If f(x) = cos (nx) - sin (nx), find f An a. -8m 83 b. -8 d. -4m 12. Find f '(x) if f(x) = 2e*. a. 20* C. e In2 b. e* d. 2e 13. Find the equation of the tangent to y = e"at the point (0, 1). a. V = X+ I C. Y= ex+ 1 b. y=-x-1 d. y= x+1 14. Iff(x) = 2x e*, find f'(1). a. 2e 0 b. be d. 15. Find the equation of the tangent to y = 3e + 3ex that is parallel to y = 6ex + 5. a. bex- y = 0 C. bex- y = 68 b. 6ex+y = 0 d. bex+ y = bePart 3: Thinking [11 marks] 2?. Differentiate the following. a} y 2 4I [1 mark] b] y 2 51:2" [1 mark] 5] J' = '3 ESSEX} [2 marks] d] y = sin(x x2) cos (i) [2 marks] I e) y = ecos(*) sin(2x - 1) [2 marks] 28. The displacement of an object attached to the end of a spring can be modelled by the function h(1) - 2.4cos 12t+ , where h is the height of the object from the floor, in centimetres, and t is the time, in seconds. Determine the acceleration of the object at time t. (3 marks)Part 4: Application [12 marks] 29. Find the equation of the tangent to the curve y = 4x - tanx at the point where x - . [6 marks] 30. The population of a bacterial culture was 5000 bacteria after 15 min and 40 000 bacteria after 1 h. a) After how many minutes will the population reach 150 000 bacteria? (3 marks) b) Find the rate of growth after 15 min. Express your answer as bacteria per hour

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!