Question: Newton.m function newton(f,df,x0,tol,n) % Newton's method for solving the nonlinear % equation f(x)=0. iter=0; u=feval(f,x0); v=feval(df,x0); err=abs(u/v); disp('___________________________________________________') disp(' iter x f(x) df(x) |xn+1-xn|') disp('___________________________________________________')


Newton.m
function newton(f,df,x0,tol,n)
% Newton's method for solving the nonlinear
% equation f(x)=0.
iter=0;
u=feval(f,x0);
v=feval(df,x0);
err=abs(u/v);
disp('___________________________________________________')
disp(' iter x f(x) df(x) |xn+1-xn|')
disp('___________________________________________________')
fprintf('%2.0f %12.6f %12.6f %12.6f ',iter,x0,u,v)
while (err>tol)&(iter
x1=x0-u/v;
err=abs(x1-x0);
x0=x1;
u=feval(f,x0);
v=feval(df,x0);
iter=iter+1;
fprintf('%2.0f %12.6f %12.6f %12.6f %12.6f ',iter,x0,u,v,err)
end
if (v==0)
disp(' division by zero')
end
if (iter>n)
disp(' Method failed to converge')
end
.............................................................................................................................
Secant.m
function secant(f,x0,x1,tol,n)
% The secant method for solving the nonlinear
% equation f(x)=0.
iter=0;
u=feval(f,x0);
v=feval(f,x1);
err=abs(x1-x0);
disp('______________________________________________________________')
disp('iter xn f(xn) f(xn+1)-f(xn) |xn+1-xn|')
disp('______________________________________________________________')
fprintf('%2.0f %12.6f %12.6f ',iter,x0,u)
fprintf('%2.0f %12.6f %12.6f %12.6f %12.6f ',iter,x1,v,v-u,err)
while (err>tol)&(iter
x=x1-v*(x1-x0)/(v-u);
x0=x1;
u=v;
x1=x;
v=feval(f,x1);
err=abs(x1-x0);
iter=iter+1;
fprintf('%2.0f %12.6f %12.6f %12.6f %12.6f ',iter,x1,v,v-u,err)
end
if ((v-u)==0)
disp(' Division by zero')
end
if (iter>n)
disp(' Method failed to converge')
end
For 01-3, use f (x)E-3.3x3 +2.5x -0.6, and be sure to modify f m and f and fprime.m accordingly
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
