Question: O: This function needs to be completed. Suggested steps: 1. Create list of normal patients (hf_events.csv only contains information about heart
O: This function needs to be completed.
Suggested steps:
1. Create list of normal patients (hf_events.csv only contains information about heart failure patients).
2. Split events into two groups based on whether the patient has heart failure or not.
3. Calculate index vid for each patient.
IMPORTANT:
`indx_vid` should be a pd dataframe with header `['pid', 'indx_vid']`.
'''
hf_patients = events.loc[events.pid.isin(hf)]
norm_patients = events.loc[~events.pid.isin(hf)]
norm_patients= norm_patients.sort_values(by=['pid', 'vid'])
vidcount_norm = (norm_patients.groupby("pid")["vid"].max())
print(len(vidcount_norm))
vidcount_hf = (hf_patients.groupby("pid")["vid"].min())
print(len(vidcount_hf))
#vidcount_hf[50285]=3
#print(vidcount_hf[50285])
#print(vidcount_hf[98085]) #=5
#print(vidcount_norm[20853])#=1
#print(vidcount_norm[47877]) #=1
f1 = pd.DataFrame({'pid':vidcount_norm.index, 'indx_vid':vidcount_norm.values})
f2 = pd.DataFrame({'pid':vidcount_hf.index, 'indx_vid':vidcount_hf.values})
f4 = dict(list(zip(f2.pid, f2.indx_vid)))
#print(f4)
f3 = pd.concat([f1, f2], axis=0)
f3 = f3.sort_values(by=['pid'])
#f4 = pd.DataFrame({'pid':f3.index, 'indx_vid':f3.values})
indx_vid = f3
print(indx_vid.shape)
print(f3[f3.pid == 78])
print(f3[f3.pid == 1230])
#print(indx_vid)
#indx_vid1 = dict(list(zip(indx_vid_df.pid, indx_vid_df.indx_vid)))
#print(indx_vid1)
# your code here
#raise NotImplementedError
return indx_vid
Step by Step Solution
There are 3 Steps involved in it
from collections import defaultdict import pandas as pd def cal... View full answer
Get step-by-step solutions from verified subject matter experts
