Question: Object Detection ( I WANT CODING ) 1 . Dataset: Use the oxford _ iiit _ pet dataset from Keras or PyTorch. For object detection,
Object Detection I WANT CODING
Dataset: Use the oxfordiiitpet dataset from Keras or PyTorch.
For object detection, you will need to find bounding boxes that correspond to the pet
objects in the segmentation masks. To create a bounding box for each pet, you can:
Identify the nonbackground pixels in the segmentation mask.
Compute the minimum and maximum coordinates xmin xmax, ymin, ymax that
enclose all the pet pixels. This will give you a bounding box for each image around the
pet object.
Example of how to calculate bounding boxes from segmentation masks:
import numpy as np
def getboundingboxsegmentationmask:
# Find nonzero regions in the segmentation mask i e the pet area
petpixels np argwheresegmentationmask
# Compute the bounding box coordinates
ymin, xmin npminpetpixels, axis
ymax, xmax maxpetpixels, axis
r e t u r n xmin, ymin, xmax, max
Using a Pretrained YOLO Model:
Download a pretrained YOLO model: YOLOv Model
Convert the model weights weights to a Kerascompatible h file.
Load the model and test it on an image by normalizing the image and applying the model
for predictions.
Show the detection results using bounding boxes drawn on the image.
Starter Code for Pretrained YOLOv Model Loading:
from tensorflow.keras.models import loadmodel
import numpy as np
import cv
import matplotlib.pyplot as plt
# Load the pretrained YOLOv model
model loadmodel yolovh
# Load and preprocess an image
def loadimageimgpath, targetsize:
image cv imreadimgpath
image cv cvtColor image cv COLORBGRRGB
imageresized cv resizeimage targetsize
imageresized imageresized # Normalize to
return npexpanddimsimageresized, axis image
# Example image path and s i z e
imgpath 'pathtoyourimage.jpg
inputsize # Standard size for YOLOv
# Load and preprocess image
inputimage, originalimage loadimageimgpath, inputsize
# Make predictions using YOLO
predictions model. predictinputimage
# Postprocess and v i s u a l i z e the detection r e s u l t s
def drawboxesimage boxes:
for box in boxes:
r e t u r n xmin, ymin, xmax, max box
cv rectangleimagexmin yminxmax ymax
image
# Example bounding boxes dummy values for i l l u s t r a t i o n
boxes # Replace with actual postprocessed YOLO output
outputimage drawboxesoriginalimage.copy boxes
# Display the output
plt imshowoutputimage
p l t a x i s o ff
plt show
Evaluation:
Evaluate the model's performance on the oxfordiiitpet dataset using the known
bounding boxes
Calculate mAP at different loU thresholds mAP mAP mAP m
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
