Question: Objective Function MINIMIZE $ [600 (x1 + x2 + x3 + x4 + x5 + x6 + x7) + 200 (y1 +y2 + y3 +
Objective Function
MINIMIZE $ [600 (x1 + x2 + x3 + x4 + x5 + x6 + x7) + 200 (y1 +y2 + y3 + y4 + y5 + y6 + y7)]
Constraints
Monday: 8 (x1 + x4 + x5 + x6 + x7) + 4 (y1 + y4 + y5 + y6 + y7) >= 136 Tuesday: 8 (x1 + x2 + x5 + x6 + x7) + 4 (y1 + y2 + y5 + y6 + y7) >= 104 Wednesday: 8 (x1 + x2 + x3 + x6 + x7) + 4 (y1 + y2 + y3 + y6 + y7) >= 120 Thursday: 8 (x1 + x2 + x3 + x4 + x7) + 4 (y1 + y2 + y3 + y4 + y7) >= 152 Friday: 8 (x1 + x2 + x3 + x4 + x5) + 4 (y1 + y2 + y3 + y4 + y5) >= 112 Saturday: 8 (x2 + x3 + x4 + x5 + x6) + 4 (y2 + y3 + y4 + y5 + y6) >= 128 Sunday: 8 (x3 + x4 + x5 + x6 + x7) + 4 (y3 + y4 + y5 + y6 + y7) >= 88
y1 + y2 + y3 + y4 + y5 + y6 + y7 < = .25 (y1 + y2 + y3 + y4 + y5 + y6 + y7 + x1 + x2 + x3 + x4 + x5 + x6 + x7)
xi >= 0 and integer, where i=1, 2, 3, 4, 5, 6, 7
yj >= 0 and integer, where j=1, 2, 3, 4, 5, 6, 7
What is the optimal value of the objective function?
A) $9,000.00
B) $12,761.90
C) $13,000.00
D) $8,800.00
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
