Question: Original Function Derivative of Function _f (x) = (cos (4x) + e 6x)2 A . f' (x ) = -ex f (x) = cos(6x2) +

Original Function Derivative of Function _f (x) = (cos (4x) + e 6x)2 A . f' (x ) = -ex f (x) = cos(6x2) + sin(4x) B f'(x) = (-sinx) (ecosx) f (x) = (cos(6x) + e4x)2 C f'(x ) = sin2x - f(x) = ex4 D f'(x) = -ex sin (ex) f (x) = (ex)4 E f'(x) = (In 12)(12x) f (x) = -ex F f'(x) = (-12x)sin (6x2) + 4 cos(4x) f (x) = xex G f'(x ) = -2 cos x f (x) = cos (ex) sin3x H f(x)= 6(2*) (In 2) f (x) = ecosx J f'(x) = 2(cos4x + ex) (-4 sin 4x + 6e 6x) _ f(x) = (sin x) (cosx) K f'(x) = 2(cos6x + e4*) (-6 sin 6x + 4e4x) f ( x ) = COS X sin x L f'(x) = ex(1+x) f (x) =. 1 sin2x M f'(x) = In(2) (2x) - In (6)(6*) f (x) = 6(2x) N f'(x) = cos2(x) - sin2(x) f (x) = 2x - 6x o f' ( x ) = ( 4x3 ) (e * * ) f (x) = (2*) (6*) P f'(x) = 4e4x
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
