Question: Paired-samples t DATA sample_id microwave lowtemp 1 0.70866 0.70861 2 0.708762 0.708792 3 0.708725 0.708734 4 0.708668 0.708662 5 0.708675 0.70867 6 0.708702 0.708713 7
Paired-samples t
DATA
| sample_id | microwave | lowtemp |
| 1 | 0.70866 | 0.70861 |
| 2 | 0.708762 | 0.708792 |
| 3 | 0.708725 | 0.708734 |
| 4 | 0.708668 | 0.708662 |
| 5 | 0.708675 | 0.70867 |
| 6 | 0.708702 | 0.708713 |
| 7 | 0.708647 | 0.708661 |
| 8 | 0.708677 | 0.708667 |
| 9 | 0.709145 | 0.709176 |
| 10 | 0.709017 | 0.709024 |
| 11 | 0.70882 | 0.708814 |
| 12 | 0.709402 | 0.709364 |
| 13 | 0.709374 | 0.709378 |
| 14 | 0.709508 | 0.709517 |
| 15 | 0.70907 | 0.709063 |
| 16 | 0.709061 | 0.709079 |
| 17 | 0.709096 | 0.709039 |
| 18 | 0.70872 | 0.7087 |
Dataset: wine_isotope.csv
Source: C. Durante, C. Baschieri, L. Bertacchini, et al (2015).
"An Analytical Approach to Sr Isotope Ratio Determination in Lambrusco
Wines for Geographical Traceability Purposes," Food Chemistry, Vol. 173,
pp. 557-563.
Description: Two methods of determining SR^87/Sr^86 isotopic ratios in
wine, used for identifying geographic location. Each method (microwave
and low temperature) were used on 18 sample wines. Paired t-test.
Variable names
sample_id
microwave
lowtemp
Paired Samples Test | ||||||||||
Paired Differences | t | df | Significance | |||||||
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | One-Sided p | Two-Sided p | |||||
Lower | Upper | |||||||||
Pair 1 | microwave - lowtemp | .000003667 | .000024646 | .000005809 | -.000008589 | .000015923 | .631 | 17 | .268 | .536 |
Ho: 1= 2
Ha: 1 2
Then
t= 0.631
P= P (t<0.631) = sig/2
P=? is it higher than 0.05,?
Provide hypothesis interpretation.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
