Question: % - - - Parameters a = 1 0 ; % Mesh width p = 0 . 2 5 ; % Link probability % -

%--- Parameters
a =10; % Mesh width
p =0.25; % Link probability
%--- Hexagonal mesh
[X, Y]= meshgrid(1:a,1:a);
for i =2:2:a
X(i, :) = X(i, :) +0.5; % Correcting the offset for even rows
end
Y = Y * sqrt(3)/2;
x = X(:);
y = Y(:);
%--- Random network generation
% Get delaunay triangulation
T = delaunay(x, y);
% Get a list of all links
tmp =[T(:,1) T(:,2); T(:,1) T(:,3); T(:,2) T(:,3)];
% Filter out duplicates
links = unique([min(tmp(:,1), tmp(:,2)), max(tmp(:,1), tmp(:,2))], 'rows');
% Filter with probability p to get the random network
L = links(rand(size(links,1),1)= p, :);
% Get sparse adjacency matrix
A = sparse(L(:,1), L(:,2), ones(size(L,1),1), a^2, a^2);
% Find clusters using the custom rcm method
tic;
C = cluster_custom_rcm(A);
toc;
% Display clusters
figure;
hold on;
colors = lines(numel(C)); % Generate distinct colors for each cluster
for i =1:numel(C)
scatter(x(C{i}), y(C{i}),100, 'filled', 'MarkerFaceColor', colors(i,:));
end
title('Clusters found using custom K-means method');
xlabel('X');
ylabel('Y');
axis equal;
grid on; % Optional: add grid for better visualization
this is the matlab script
this is the matlab function:
function C = cluster_custom_rcm(A)
% Symmetrize adjacency matrix
S = A + A';
% Reverse Cuthill-McKee ordering using your custom method
r = ReverseCuthillMckee(S);
% Get the clusters
C ={r(1)};
for i =2:numel(r)
if any(S(C{end}, r(i)))
C{end}(end+1)= r(i);
else
C{end+1}= r(i);
end
end
like this create a custom kmeans function that creates clusters using kmeans clustering algorithm instead of reverse cuthill mckee algorithm
the output should look like the image attached (but instead of reverse cuthill mckee algorithm for clustering use K-means )
% - - - Parameters a = 1 0 ; % Mesh width p = 0 .

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!