Question: Part 2 - Solving Exponential problems 1. Solve 8 x = 8 5 A. 2 B. 4 C. 1 D. 5 E. 3 F. 8

Part 2 - Solving Exponential problems

1. Solve 8x = 85

A. 2

B. 4

C. 1

D. 5

E. 3

F. 8

2. Solve 13 (x + 11) = 138

A. 4

B. -3

C. 2

D. -1

E. 3

F. -2

3. Solve 4x = 16

A. 8

B. 6

C. 5

D. 4

E. 3

F. 2

4. Solve 2(3x - 6) = 8

A. 11

B. 9

C. 7

D. 5

E. 3

F. 1

5. Solve 5(x2 - 3x) = 1/25

A. 1, 2

B. 1, 4

C. 2, 2

D. 2, 4

E. 1, 3

F. 2, 5

6. Solve 9(2x2 - 2x) = 27

A. 1, 3

B. -3/2, 1

C. 1, -2

D. 1/2, -3

E. -3/2, 2

F. 3/2, -1/2

7. Solve 3(x - 5) = 1/81

A. 1

B. 2

C. 3

D. -3

E. -2

F. -1

8. Solve 3x = 29

A. 4.150

B. 3.065

C. 2.5

D. 3.75

E. 2.075

F. 1.25

9. Solve 8x = 456

A. 12

B. 2.014

C. 3.15

D. 2.944

E. 4.255

F. 2

10. Solve 123x = 89

A. 1.456

B. 0.702

C. 1.253

D. 0.602

E. 3.245

F. 0.035

11. Solve 8(3x - 6) = 876

A. 20.235

B. 12.354

C. 10.274

D. 8.345

E. 6.236

F. 4.654

12. Solve 5ex - 32 = 212

A. 2.459

B. 2.468

C. 1.453

D. 3.888

E. 3.678

F. 1.546

13. Solve 100003.21x = 340000

A. 0.045

B. 0.457

C. 1.376

D. 0.543

E. 0.431

F. 2.565

14. Solve 128(11.36)x = 100

A. 2.392

B. -0.632

C. 1.581

D. -0.102

E. 0.632

F. 1.576

15. Solve 28(132(39x - 20)) = 12481

A. 2.755

B. 0.345

C. 1.675

D. 2.345

E. 0.545

F. 4.235

16. Solve 5e(2.1x - 2) = 14

A. 1.443

B. 2.543

C. 5.343

D. 2.434

E. 1.343

F. 0.443

17. A type of bacteria doubles in population every 2 hours. Given that there were approximately 5 bacteria to start with, how many bacteria will there be in 10 hours?

A. 575

B. 375

C. 125

D. 150

E. 230

F. 160

18. The half-life of a radioactive substance is one hundred twenty-five days. How many days will it take for eighty-two percent of the substance to decay?

A. 180

B. 367

C. 275

D. 310

E. 532

F. 426

19. A bacteria population doubles every four minutes. If the population begins with one cell, how long will it take to grow tto 1,024 cells?

A. 8 minutes

B. 320 minutes

C. 54 minutes

D. 160 minutes

E. 40 minutes

F. 219 minutes

20. At time t = 0 hours, there are 500 bacteria in a favorable growth medium. 5 hours later, there are 2000 bacteria. aAssuming exponential growth, what is the growth constant "k" for the bacteria?

A. 0.155

B. 2.543

C. 0.135

D. 0.277

E. 1.467

F. 1.866

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!