Question: Part A: Caleb has the expected utility maximizer U(wealth) = wealth^0.8 and starts with wealth = 1,000. He is offered the following gambling opportunities: gamble_1:
Part A: Caleb has the expected utility maximizer U(wealth) = wealth^0.8 and starts with wealth = 1,000. He is offered the following gambling opportunities:
gamble_1: 25% chance of losing $50 & a 75% chance of winning $20
gamble_2: a 25% chance of losing 100 and a 75% chance of winning $45
1) Compute the expected change in wealth for gamble_1.
2) Compute the expected change in wealth for gamble_2.
3) Compute the final expected utility of wealth if Caleb chooses gamble_1.
4) Compute the final expected utility of wealth if Caleb chooses gamble_2.
5) Specify which gamble Caleb would choose based on results.
Part B: Megan has the following prospect theory preferences:
U(wealth) = wealth - reference_point if wealth ends up being greater than the reference point
U(wealth) = -1.75*(reference_point - wealth) when wealth ends up being less than the reference point.
Assume reference_point = initial wealth at $1000.
1) What is the expected utility for Megan if she chooses gamble_1?
2) What is the expected utility for Megan if she chooses gamble_2?
3) Which gamble would Megan prefer?
4) Explain what 1.75 in this exercise signifies.
Source: Course Practice Problems
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
