Question: Please do in python no derivativation needed. Just code Consider the time-delay stochastic problem considered in lecture, where a random process,is a zero-mean stationary process

Please do in python no derivativation needed. Just code  Please do in python no derivativation needed. Just code Consider the

Consider the time-delay stochastic problem considered in lecture, where a random process,is a zero-mean stationary process representing a transmitted signal, and y(is the (attenuated) received signal at a time delay t. There is additional noise generated in the detector, hat is stationary, zero mean, and uncorrelated with ,).The relationship between these random processes is given by where is the attenuation factor. Derive an expression for the autocorrelation function forv,()Discuss. Now consider that x,() is a sine wave process, with fixed ampitude A and random phase constant 0, and n,) is noise process. Write a program that creates sample records for y,(1, where the noise is modeled in discrete time by choosing a random number over the uniform distribuion UB.B) where B is an adjustable parameter. For different values of B plot your noisy data for the sample records of y, their autocorrelation function, and the autocorrelation function's Fourier Transform. Consider the cases where the amplitude of the noise is much less, similar to, and much greater than the received attenuated signal. Discuss Consider the time-delay stochastic problem considered in lecture, where a random process,is a zero-mean stationary process representing a transmitted signal, and y(is the (attenuated) received signal at a time delay t. There is additional noise generated in the detector, hat is stationary, zero mean, and uncorrelated with ,).The relationship between these random processes is given by where is the attenuation factor. Derive an expression for the autocorrelation function forv,()Discuss. Now consider that x,() is a sine wave process, with fixed ampitude A and random phase constant 0, and n,) is noise process. Write a program that creates sample records for y,(1, where the noise is modeled in discrete time by choosing a random number over the uniform distribuion UB.B) where B is an adjustable parameter. For different values of B plot your noisy data for the sample records of y, their autocorrelation function, and the autocorrelation function's Fourier Transform. Consider the cases where the amplitude of the noise is much less, similar to, and much greater than the received attenuated signal. Discuss

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!