Question: Please provide the computations for the cells in this problem to ensure understanding of how the result was achieved. Stock price Annual Dividend yield (D/P)
Please provide the computations for the cells in this problem to ensure understanding of how the result was achieved.
| Stock price | Annual Dividend yield (D/P) | Exercise Price | Risk free Rate | Time to expiration (yrs) | Volatility (Annualized) | Adjusted Stock Price | d1 | N'(d1) | d2 | Option premium |
| 5 | 0 | 45 | 0.06 | 0.25 | 0.2 | 5 | -21.77 | 5E-104 | -21.872 | 0 |
| 10 | 0 | 45 | 0.06 | 0.25 | 0.2 | 10 | -14.84 | 6E-49 | -14.941 | 0 |
| 15 | 0 | 45 | 0.06 | 0.25 | 0.2 | 15 | -10.79 | 2.2E-26 | -10.886 | 0 |
| 20 | 0 | 45 | 0.06 | 0.25 | 0.2 | 20 | -7.909 | 1E-14 | -8.0093 | 0 |
| 25 | 0 | 45 | 0.06 | 0.25 | 0.2 | 25 | -5.678 | 4E-08 | -5.7779 | 0 |
| 30 | 0 | 45 | 0.06 | 0.25 | 0.2 | 30 | -3.855 | 0.00024 | -3.9547 | 0 |
| 35 | 0 | 45 | 0.06 | 0.25 | 0.2 | 35 | -2.313 | 0.02748 | -2.4131 | 0.01195526 |
| 40 | 0 | 45 | 0.06 | 0.25 | 0.2 | 40 | -0.978 | 0.24733 | -1.0778 | 0.33236805 |
| 45 | 0 | 45 | 0.06 | 0.25 | 0.2 | 45 | 0.2 | 0.39104 | 0.1 | 2.13609877 |
| 50 | 0 | 45 | 0.06 | 0.25 | 0.2 | 50 | 1.2536 | 0.18183 | 1.1536 | 5.93192353 |
| 55 | 0 | 45 | 0.06 | 0.25 | 0.2 | 55 | 2.2067 | 0.03495 | 2.1067 | 10.6972079 |
| 60 | 0 | 45 | 0.06 | 0.25 | 0.2 | 60 | 3.0768 | 0.00351 | 2.9768 | 15.671753 |
| 65 | 0 | 45 | 0.06 | 0.25 | 0.2 | 65 | 3.8772 | 0.00022 | 3.7772 | 20.670044 |
| 70 | 0 | 45 | 0.06 | 0.25 | 0.2 | 70 | 4.6183 | 9.3E-06 | 4.5183 | 25.6699655 |
| 75 | 0 | 45 | 0.06 | 0.25 | 0.2 | 75 | 5.3083 | 3E-07 | 5.2083 | 30.6699628 |
| 80 | 0 | 45 | 0.06 | 0.25 | 0.2 | 80 | 5.9536 | 8E-09 | 5.8536 | 35.6699627 |
| 85 | 0 | 45 | 0.06 | 0.25 | 0.2 | 85 | 6.5599 | 1.8E-10 | 6.4599 | 40.6699627 |
| 90 | 0 | 45 | 0.06 | 0.25 | 0.2 | 90 | 7.1315 | 3.6E-12 | 7.0315 | 45.6699627 |
| 95 | 0 | 45 | 0.06 | 0.25 | 0.2 | 95 | 7.6721 | 6.6E-14 | 7.5721 | 50.6699627 |
| 100 | 0 | 45 | 0.06 | 0.25 | 0.2 | 100 | 8.1851 | 1.1E-15 | 8.0851 | 55.6699627 |
| 105 | 0 | 45 | 0.06 | 0.25 | 0.2 | 105 | 8.673 | 1.8E-17 | 8.573 | 60.6699627 |
| 110 | 0 | 45 | 0.06 | 0.25 | 0.2 | 110 | 9.1382 | 2.9E-19 | 9.0382 | 65.6699627 |
| 115 | 0 | 45 | 0.06 | 0.25 | 0.2 | 115 | 9.5827 | 4.6E-21 | 9.4827 | 70.6699627 |
| 120 | 0 | 45 | 0.06 | 0.25 | 0.2 | 120 | 10.008 | 7.1E-23 | 9.9083 | 75.6699627 |
| 125 | 0 | 45 | 0.06 | 0.25 | 0.2 | 125 | 10.417 | 1.1E-24 | 10.317 | 80.6699627 |
| 130 | 0 | 45 | 0.06 | 0.25 | 0.2 | 130 | 10.809 | 1.7E-26 | 10.709 | 85.6699627 |
| 135 | 0 | 45 | 0.06 | 0.25 | 0.2 | 135 | 11.186 | 2.7E-28 | 11.086 | 90.6699627 |
| 140 | 0 | 45 | 0.06 | 0.25 | 0.2 | 140 | 11.55 | 4.3E-30 | 11.45 | 95.6699627 |
| 145 | 0 | 45 | 0.06 | 0.25 | 0.2 | 145 | 11.901 | 7E-32 | 11.801 | 100.669963 |
| 150 | 0 | 45 | 0.06 | 0.25 | 0.2 | 150 | 12.24 | 1.2E-33 | 12.14 | 105.669963 |
| 155 | 0 | 45 | 0.06 | 0.25 | 0.2 | 155 | 12.568 | 2E-35 | 12.468 | 110.669963 |
| 160 | 0 | 45 | 0.06 | 0.25 | 0.2 | 160 | 12.885 | 3.5E-37 | 12.785 | 115.669963 |
| 165 | 0 | 45 | 0.06 | 0.25 | 0.2 | 165 | 13.193 | 6.4E-39 | 13.093 | 120.669963 |
| 170 | 0 | 45 | 0.06 | 0.25 | 0.2 | 170 | 13.491 | 1.2E-40 | 13.391 | 125.669963 |
| 175 | 0 | 45 | 0.06 | 0.25 | 0.2 | 175 | 13.781 | 2.3E-42 | 13.681 | 130.669963 |
| 180 | 0 | 45 | 0.06 | 0.25 | 0.2 | 180 | 14.063 | 4.5E-44 | 13.963 | 135.669963 |
| 185 | 0 | 45 | 0.06 | 0.25 | 0.2 | 185 | 14.337 | 9.3E-46 | 14.237 | 140.669963 |
| 190 | 0 | 45 | 0.06 | 0.25 | 0.2 | 190 | 14.604 | 2E-47 | 14.504 | 145.669963 |
| 195 | 0 | 45 | 0.06 | 0.25 | 0.2 | 195 | 14.863 | 4.3E-49 | 14.763 | 150.669963 |
| 200 | 0 | 45 | 0.06 | 0.25 | 0.2 | 200 | 15.117 | 9.6E-51 | 15.017 | 155.669963 |
| 205 | 0 | 45 | 0.06 | 0.25 | 0.2 | 205 | 15.363 | 2.2E-52 | 15.263 | 160.669963 |
| 210 | 0 | 45 | 0.06 | 0.25 | 0.2 | 210 | 15.604 | 5.3E-54 | 15.504 | 165.669963 |
| 215 | 0 | 45 | 0.06 | 0.25 | 0.2 | 215 | 15.84 | 1.3E-55 | 15.74 | 170.669963 |
| 220 | 0 | 45 | 0.06 | 0.25 | 0.2 | 220 | 16.07 | 3.4E-57 | 15.97 | 175.669963 |
| 225 | 0 | 45 | 0.06 | 0.25 | 0.2 | 225 | 16.294 | 8.8E-59 | 16.194 | 180.669963 |
| 230 | 0 | 45 | 0.06 | 0.25 | 0.2 | 230 | 16.514 | 2.4E-60 | 16.414 | 185.669963 |
| 235 | 0 | 45 | 0.06 | 0.25 | 0.2 | 235 | 16.729 | 6.7E-62 | 16.629 | 190.669963 |
| 240 | 0 | 45 | 0.06 | 0.25 | 0.2 | 240 | 16.94 | 1.9E-63 | 16.84 | 195.669963 |
| 245 | 0 | 45 | 0.06 | 0.25 | 0.2 | 245 | 17.146 | 5.8E-65 | 17.046 | 200.669963 |
| 250 | 0 | 45 | 0.06 | 0.25 | 0.2 | 250 | 17.348 | 1.8E-66 | 17.248 | 205.669963 |
| 255 | 0 | 45 | 0.06 | 0.25 | 0.2 | 255 | 17.546 | 5.6E-68 | 17.446 | 210.669963 |
| 260 | 0 | 45 | 0.06 | 0.25 | 0.2 | 260 | 17.74 | 1.8E-69 | 17.64 | 215.669963 |
| 265 | 0 | 45 | 0.06 | 0.25 | 0.2 | 265 | 17.931 | 6.1E-71 | 17.831 | 220.669963 |
| 270 | 0 | 45 | 0.06 | 0.25 | 0.2 | 270 | 18.118 | 2.1E-72 | 18.018 | 225.669963 |
| 275 | 0 | 45 | 0.06 | 0.25 | 0.2 | 275 | 18.301 | 7.4E-74 | 18.201 | 230.669963 |
| 280 | 0 | 45 | 0.06 | 0.25 | 0.2 | 280 | 18.481 | 2.7E-75 | 18.381 | 235.669963 |
| 285 | 0 | 45 | 0.06 | 0.25 | 0.2 | 285 | 18.658 | 1E-76 | 18.558 | 240.669963 |
| 290 | 0 | 45 | 0.06 | 0.25 | 0.2 | 290 | 18.832 | 3.9E-78 | 18.732 | 245.669963 |
| 295 | 0 | 45 | 0.06 | 0.25 | 0.2 | 295 | 19.003 | 1.5E-79 | 18.903 | 250.669963 |
| 300 | 0 | 45 | 0.06 | 0.25 | 0.2 | 300 | 19.171 | 6.2E-81 | 19.071 | 255.669963 |
When the Option is deep in the money: There is no limit to the option value, it can increase upto any value, with increase in underlying price but the time value will not increase more than 0.6699. (As shown in the table mentioned below). Therefore, time value of option increases initially, but reaches to highest level at ATM option i.e. K= 45, after it starts decreasing and then become constant for deep in the money options.
| Stock price | Option premium | Intrinsic Value | Time Value |
| 5 | 0 | 0 | 0 |
| 10 | 0 | 0 | 0 |
| 15 | 0 | 0 | 0 |
| 20 | 0 | 0 | 0 |
| 25 | 0 | 0 | 0 |
| 30 | 0 | 0 | 0 |
| 35 | 0.011955 | 0 | 0.011955 |
| 40 | 0.332368 | 0 | 0.332368 |
| 45 | 2.136099 | 0 | 2.136099 |
| 50 | 5.931924 | 5 | 0.931924 |
| 55 | 10.69721 | 10 | 0.697208 |
| 60 | 15.67175 | 15 | 0.671753 |
| 65 | 20.67004 | 20 | 0.670044 |
| 70 | 25.66997 | 25 | 0.669965 |
| 75 | 30.66996 | 30 | 0.669963 |
| 80 | 35.66996 | 35 | 0.669963 |
| 85 | 40.66996 | 40 | 0.669963 |
| 90 | 45.66996 | 45 | 0.669963 |
| 95 | 50.66996 | 50 | 0.669963 |
| 100 | 55.66996 | 55 | 0.669963 |
| 105 | 60.66996 | 60 | 0.669963 |
| 110 | 65.66996 | 65 | 0.669963 |
| 115 | 70.66996 | 70 | 0.669963 |
| 120 | 75.66996 | 75 | 0.669963 |
| 125 | 80.66996 | 80 | 0.669963 |
| 130 | 85.66996 | 85 | 0.669963 |
| 135 | 90.66996 | 90 | 0.669963 |
| 140 | 95.66996 | 95 | 0.669963 |
| 145 | 100.67 | 100 | 0.669963 |
| 150 | 105.67 | 105 | 0.669963 |
| 155 | 110.67 | 110 | 0.669963 |
| 160 | 115.67 | 115 | 0.669963 |
| 165 | 120.67 | 120 | 0.669963 |
| 170 | 125.67 | 125 | 0.669963 |
| 175 | 130.67 | 130 | 0.669963 |
| 180 | 135.67 | 135 | 0.669963 |
| 185 | 140.67 | 140 | 0.669963 |
| 190 | 145.67 | 145 | 0.669963 |
| 195 | 150.67 | 150 | 0.669963 |
| 200 | 155.67 | 155 | 0.669963 |
| 205 | 160.67 | 160 | 0.669963 |
| 210 | 165.67 | 165 | 0.669963 |
| 215 | 170.67 | 170 | 0.669963 |
| 220 | 175.67 | 175 | 0.669963 |
| 225 | 180.67 | 180 | 0.669963 |
| 230 | 185.67 | 185 | 0.669963 |
| 235 | 190.67 | 190 | 0.669963 |
| 240 | 195.67 | 195 | 0.669963 |
| 245 | 200.67 | 200 | 0.669963 |
| 250 | 205.67 | 205 | 0.669963 |
| 255 | 210.67 | 210 | 0.669963 |
| 260 | 215.67 | 215 | 0.669963 |
| 265 | 220.67 | 220 | 0.669963 |
| 270 | 225.67 | 225 | 0.669963 |
| 275 | 230.67 | 230 | 0.669963 |
| 280 | 235.67 | 235 | 0.669963 |
| 285 | 240.67 | 240 | 0.669963 |
| 290 | 245.67 | 245 | 0.669963 |
| 295 | 250.67 | 250 | 0.669963 |
| 300 | 255.67 | 255 | 0.669963 |
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
