Question: please show steps on how it is done in excel displaying variables, objective function and constraints and solved using solver . Moyer Masonry Company produces

please show steps on how it is done in excel displaying variables, objective function and constraints and solved using solver
please show steps on how it is done in excel
. Moyer Masonry Company produces a product that involves a manufacturing process with two successive operations, I and II. The following table provides the pertinent data over the months of June, July, and August. Finished product demand (units) Capacity of operation I (hours) Capacity of operation II (hours) June July August 500 450 600 800 700 550 1000 850 700 Producing a unit of the product takes 7 hr on operation I plus .8 hr on operation II. Overproduction of either the semifinished product (operation I) or the finished product (operation II) in any month is allowed for use in a later month. The respective holding costs for operations I and II are $.30 and $.40 per unit per month. The production cost varies by operation and by month. For operation I, the unit production cost is $10, $12, and $9 for June, July, and August. For operation 2, the corresponding unit production cost is $15, $19, and $16. Develop an LP model to determine the optimum production schedule for the two products and find the optimum solution using the Excel solver. . Moyer Masonry Company produces a product that involves a manufacturing process with two successive operations, I and II. The following table provides the pertinent data over the months of June, July, and August. Finished product demand (units) Capacity of operation I (hours) Capacity of operation II (hours) June July August 500 450 600 800 700 550 1000 850 700 Producing a unit of the product takes 7 hr on operation I plus .8 hr on operation II. Overproduction of either the semifinished product (operation I) or the finished product (operation II) in any month is allowed for use in a later month. The respective holding costs for operations I and II are $.30 and $.40 per unit per month. The production cost varies by operation and by month. For operation I, the unit production cost is $10, $12, and $9 for June, July, and August. For operation 2, the corresponding unit production cost is $15, $19, and $16. Develop an LP model to determine the optimum production schedule for the two products and find the optimum solution using the Excel solver

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related General Management Questions!