Question: Prior Communality Estimates: ONE Eigenvalues of the Correlation Matrix: Total =4 Average = 1 Eigenvalue Difference Proportion Cumulative 2.27311809 1. 19203744 0.5683 0.5683 2 1.08108065



Prior Communality Estimates: ONE Eigenvalues of the Correlation Matrix: Total =4 Average = 1 Eigenvalue Difference Proportion Cumulative 2.27311809 1. 19203744 0.5683 0.5683 2 1.08108065 0.63090921 0.2703 0.8385 3 0.45017144 0.25454161 0.1125 0.9511 4 0. 19562982 0.0489 1.0000 Scree Plot Variance Explained 1.0 2.0 0.8 1.5 0.6 Eigenvalue Proportion 1.0 0.4 0.2 0.5 0.0 1 2 3 2 W Factor Factor Cumulative ProportionPrincipal Varimax Component Rotated Loadings Loadings Variables f1 f2 f1 f2 Communalities, y1 -0.039 0.989 0.025 0.990 0.981 y2 0.889 0.268 0.893 0.256 0.863 y3 0.893 -0.158 0.891 0.170 0.822 y4 0.827 -0.072 0.826 -0.084 0.689 Variance accounted for 2.273 1.081 2.273 1.081 3.354 Proportion of total variance 0.568 0.270 0.568 0.270 0.839 Cumulative proportion 0.568 0.839 0.568 0.839 0.839Prior Communality Estimates: ONE Eigenvalues of the Correlation Matrix: Total = 4 Average = 1 Eigenvalue Difference Proportion Cumulative 2.27311809 1. 19203744 0.5683 0.5683 2 1.08108065 0.63090921 0.2703 0.8385 3 0.45017144 0.25454161 0.1125 0.9511 4 0. 19562982 0.0489 1.0000 2 factors will be retained by the NFACTOR criterion. Factor Pattern Factor1 Factor2 y1 -0.03862 0.98945 y2 0.88915 0.26840 y3 0.89283 -0.15750 y4 0.82698 -0.07232 The FACTOR Procedure Rotation Method: Varimax Orthogonal Transformation Matrix 2 Rotated Factor Pattern 0.99990 0.01384 1.0 0.8 0.01384 0.99990 0.6 0.4 Rotated Factor Pattern 0.2 Factor 2 (32.24%) Factor1 Factor2 0.0 -0.2 o y1 -0.02492 0.98989 -0.4 y2 0.89278 0.25607 -0.6 -0.8 y3 0.89056 -0. 16985 -1.0 y4 0.82590 -0.08376 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Factor 1 (67.76%)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
