Question: Project #1 Modeling Trends with Linear & Q ' ' QME 112de Fun MAC 1105; Spring 2017 5 h mons N :N I yklll Part
Project #1 Modeling Trends with Linear & Q ' ' QME 112de Fun MAC 1105; Spring 2017 5 h mons N :N I yklll Part 1: Creating a Linear Equation to Model an Observed Trend hamm Wsmwmmmgmwdmnmmm. Mumbaofmportaimhas WWmfimdnpmmWMmfihmwwwofim W mmmwmwmwmewmm' mmmmmmuwmmmmmmdwmmmw w mamammmmmnmcmmdrmmaxcus.m Ir ' I ' 'v- k v4.1;if-4-Jillll l . ' . . fl minnicul-auanruc 1" fl ' I' - Mu -( my si'.' .rii'srciSHg'vzh'iuu 5I.iut(glaak*. quinn" hu" ' x', wi?) u'u' . unwwhw In. amr}; wmuun "sm-sw Win! ' ' - "Hair" Wing, (my iau-vw "quail ii). dinngg- Hua; mum: h'qh-J'E table above. I mun: (Round to the nearest whole number.) amur"; "5.4'; .(on average)? 3. Let x represent the number of Write an equation of a line that data points discussed in #2. years after 1993. Rewrite the two data points discussed in #2. models the total number of TB cases at years after 1993 using the two 4. Let x represent the number of years after 1993. Write the equation of the am sion line for the data in the table. Use all the data points and a linear; regression. 5 GA {geek-iv 'iir- ,2'i2!315;six""iivemi) mme it, si unuiejzm , > ="'-iiu}i!ln'-'."'weami Is ' '..1:L T'fl-" t ' mm an; 33mins!lusT-zmimimu iitkazili11x'!"i="fluwm'"! ' v . : ':Iiilc1[3:v http://www.cdc.g0v/Features/dsTB2O1 lDam/indexm. ; flu ;:' Mai Iffii'fli-sl- hawai-Ia." 'I-nmlii-m" . . "rin; 1-2521-1 un.gwr,"wamuywwhu;ma;;a;mw;nni ' - 'j":fi';-3"-4 . ."minami."mucuum';;m,4meiifkgfigimnnngup( [amin-ui." "' 1 Ar". . eli ui; rf. waywaiun. an"; znuiifilq'} qi; may-gm fling; JIIHU aflqrii'ciub gwu'iygqqiigiiu W 'f'iiu iis: "H'fflllt')" ni ;4:s'p=,.u-=.iiz;m iir=l= writ-cr 5Min: viil' ikm'iwii" "'9 w 3 vs . - v ' .v ., ' . .> A 1 ' .. h "lamb! u?.f;:;u;en gun'aunhu- n '7 " .n Kfilll!'"'1".; in? 'n * - ' uh": LLNA ,-r n . L ., , v .. ' '. ' ""' "HM" wwii!" zh'yzul' hp n'gnudo'td' H" Illbqkfi': ss 34 > . ' "'= " "nunn ' 'f'ifih'fln 'H .:'A-'.,=2n';luv riiu'; dump qu' voifliifllh3. Let x represent the number of years after 2000. Perform a Linear Regression. Write the equation of a line that is best fit for the data in the table. (Round to the nearest tenth.) # reported Measles cases - 4. Use the model (equation) generated in #3 to complete the table. What does this model predict about the number of measles cases in years to come? Is it realistic to expect this trend to continue? 5. Giventhatoutbreaksaresnmeuzhatmmmhmadelmmummfisficmyou? o ' easeswfllmnfinuemfise? Whyorwhynot? mm ' manningmemofmesmwmemfiwm$ whydoPart III: Interpreting Slope as a Rate of Change Kinematics: Objects in motion This Physics topic is a branch of classical mechanics that uses geometry and equations to model (and ultimately explain) the movement of objects in the real world. This field has made great engineering contributions to the modern world by introducing the ideas of cams (gears) and linkage (rods) to translate circular motion in linear motion. Kinematics at its inception provided a rational and organized way for inventors to pursue machinery. Kinematics facilitated the invention of steam boats, robots, automobiles, aircraft, satellites, consumer electronics, and even prosthesesL hm://mzbritatmica.ouldEBchediedltopic/318099/kinematics htzpzllwww.pnenherg.olp'filesl27106/27lOG-h/27106-hhtm hnpzlfkmoddllibmyoomelledu'mphp One application of kinemarics that reveals the patterns of a quadratic function is the acceleration of an object in one direction. Distance flaveled: a physical length (usually measured in rnetem, miles, or feet) sm of an object: the rate of change of the distance (position) of 3121 objec/ftgggs or mph) , 'g ' : f fthe eedofanob'ect(m/s ormi AMMO of an object the rate 0 change 0 sp my 2 K g f -* Speed (or velocity) isflIe change indistanee. ' A Hfiedistmuawfledforepefiodoffimeisknmthe slopcfionnulatsusedtoealculme speed. We: Amomosntsuumnmzsmzomonnmlanmmmmsn l -. My)". ; fai'v1'1qicvllke'l' 'i "r@-, . . 74 ns 'qvv or" 7 -. "'fl ' - - -. v:v.-. ; ikLiLLU win an Lilian, il - T 'J' A . IQ'Q . -" am, Wifi" 'mailVQJEHMJQ. , xl AJ! fiviliic 'n .... - am fu" ; noam, iii. Shut; iiii'iiinligg haig'iubfi finn, citiwiilu'.' 1- now .: mini7vzwsx-311fl aware "haus," ; mm the was Speedmtmm viimi; muj'imm amy. lgwii. me sulu vin 'iitdiuit-inIiis7 Consider the table describing the Cheetah. Answer the following below. m 3 Calculate the slope using the slope formula. (Be sure to hst the umts.) b. Is the Cheetah running? What can be said about the Cheetah's speed? c. Is the Cheetah accelerating or decelerating? (Is it speeding up or slowing down?) What can be said about the Cheetah's acceleration? Slope = Gin." nr- ,. '"a' r'. n. i r'. n , , . V. , . . ' ., m, V '. .4.7. i "."; l, M. X , A. .;- by ,V V, ( ank'ugta: rin;- nghil; 1lk'flvnhllylg my gllmllml; we? AX u'i' igihhlmmIgglfunp nm: "In: .. iv - . l -w 'i sd "him 'i' a. :" " a v L i" y zi' ' Mil ' ;' inll' IN; "i" a can ' riuv MJ! 'i' ; "In". 1" "x .- i,---.' ' ' All: , by V 1er "am t'i UL; Jl, V sink, la : r V fl." . I It. "am CI MJ! c- It: km; jgl'mu; annum; z'':n;!= mun); mm; dunn: zill agllml; :' qglirlh o s .1: line ghana Hul-'Jlulpfihllgg cir nlgn-allsqrqnngg ul: 6: ayr-fading up m . Sia'vsuu "many"; "Align gunfire mm; qlvltuli'in; mum : qgtuallnrnunn' . . "(Hiltl' '. ' 7. . . 8 its speed from O to 60mph in 3.4 seam Find the amelemfion math umts mph/s. (Round to the thousandth.) h Wmthethousandth.) 3 Ma Mmmmmmflmmmmmflm: seconds. ME deheammamhdmmmmmmw M r' . ., l ' watanwm- " Wim "wv.- ? - 3min"; qjmaii ' nw'ia'llw mum 'Ipr' . ' swain", yquulcm gig/"liam ', "'L'fiiugriiniilt iquqiimn -'iirm zi'um'i'. "gunn" my"; vignugmgi'Qw lin: Hamm. rn: '' : xaih'mub z}: 15 mm: zm'tufgil'dgggii'qs;' Him": hmv walla'sflzliwlfl: uni. ins: unit: r'.'1'li;'cx'm!ir HNP'L'A'I'". - , on Differences: . 3, uadratic Relationshl i'g'tieigferences (or change in y-Values) are constant for censtant Change In x. ' the 'lrs for a constant Change ln x- of of a SOOft high building. ' ball dro ed from the ro The data Shown here descnbes 3 pp d differences to find the acceleratlon (ft/fi), Use first differences to find the speeds (ft/s) and SOCOII a Notice that the speed is changing as the ball drops. b. Explain what type of movement is occurring. Why are the values negative? 4. Writeaquadraficequafiontomodelthcheightofflm (Him: H=ax2+bx+c,threa. b, Now: The starting speedsLbnziflhezemsimcflmbaflissfinplydtDWMnmmmm) at Accelerafianfitommpama)? (imam WIM be-amw mum ac e% higgufifiiilifit iijusygtiixgiiu itumnnni; r,?1.' v' ' iv tc ; V"A.{ tw. isn't: an! Fulh- eur $Me ng"; runup ein; anu-"nu! shut; 'iiuumuhzw ut: .ut flqfljjrf jai, {'3 v
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
