Question: Projectile motion (vector creation and use) My Solutions > Consider the motion of an object modeled with ideal projectile motion (neglecting air resistance). yo d

Projectile motion (vector creation and use) My Solutions > Consider the motion of an object modeled with ideal projectile motion (neglecting air resistance). yo d The trajectory of the object can be derived from basic physics and is given by the formula: y=1 tan 0 - 1 + yo 2 (v, cos 02 where y is the height in meters, x is the horizontal position in meters. O is the initial angle, g is the acceleration due to gravity 9.81m/s), vo is the initial velocity in m/s, and yo is the initial height in meters. The range, d, of the projectile is the total horizontal distance it travels before hitting the ground and can be determined using the formula: d = locos e (v sin 0 + V (vysin 02 +2gyo) 8 Code has already been provided to define a function named projectileTrajectory that accepts values for vo (units of meters/second), 0 (units of degrees), and yo (units of meters) as inputs and assigns them to the variables vo, theta, and yo respectively. Add commands to compute the following and assign to the indicated output variables. . Generate a column vector of 200 equally spaced x-values starting at 0 and ending at d and assign to the output variable x Generate a column vector of 200 y-values that gives the height of the projectile corresponding to each x in the fist output and assign to the output variable y Determine the coordinates (x, y) of the peak of the trajectory (i.e. the highest value of y and the corresponding value of x) and assign as a 2-element row vector to the variable xyPeak Solve this problem using only vectorized code with no loops or if statements. Note the values of ve, theta, and yo are supplied to the function when it is run by MATLAB grader. Be sure not to overwrite these values in your code
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
