Question: Prove or disprove if the following are vector subspaces The set {(x, y, z) R 3 | x + y = 0} R 3 .
Prove or disprove if the following are vector subspaces
The set {(x, y, z) R 3 | x + y = 0} R 3 .
The set of all 22 matrices of determinant 0, as a subset of M22.
The set of continuous functions f : R R satisfying R 3 1 f(x) dx = 0, as a subset of C0.
The set of all polynomials p(x) such that p(1)p(4) = 0, as a subset of P.
I understand you have to show they are closed under addition, scalar multiplication and contain the zero vector but I'm not sure how to show those
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
