Question: Prove that any graph has at least two vertices with the same degree. A complete bipartite graph on ( m , n ) vertices, is

Prove that any graph has at least two vertices with the same degree. A complete bipartite graph on ( m , n ) vertices, is a simple graph whose vertices can be divided into two distinct, non-overlapping sets (that is, suppose V has m vertices and W has n vertices) in such a way that there is exactly one edge from each vertex of V to each vertex of W , there is no edge from any one vertex of V to any other vertex of V , and there is no edge from any one vertex of W to any other vertex of W. Use ways to select the edges to show that this graph has m x n edges Use combinations to show that the number of edges on a complete graph is n(n-1)/2

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Accounting Questions!