Question: i) Show that f(x) is the solution of the equation. ii) Solve this equation. = = = f(t) sin a(z - t)dt fonksiyonunun, a y


= i) y(x) y + aʻy = f(x), y(0) = y(0) = 0 denkleminin çözümü olduğunu gösteriniz. аra $*s(t) sin a(x – tydt fonksiyonunun, [

i) Show that f(x) is the solution of the equation.

ii) Solve this equation.
 

= = = f(t) sin a(z - t)dt fonksiyonunun, a y" + ay = f(x), y(0) = y'(0) = 0 denkleminin zm olduunu gsteriniz. ii) 2 cos (2t) + cos(3t) = y(t) + [* (t u)y(u)du, y(0) = 0 denklemini znz. i) y(x)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

SOLUTION i lk olarak verilen denklemi kontrol etmek iin yxi fxe eitleyelim yx ft sinaz t dt yx ft si... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Economics Questions!