Question: Q 4 . ( 2 5 pts ) . Consider the following 1 0 - record Iris dataset. table [ [ table [

Q4.(25 pts). Consider the following 10-record Iris dataset.
\table[[\table[[Sepal],[Length]],\table[[Sepal],[Breadth]],\table[[Petal],[Length]],\table[[Petal],[Breadth]],Species],[6.8,3.2,5.9,2.3,Iris-virginica],[6.9,3.1,5.1,2.3,Iris-virginica],[4.9,3,1.4,0.2,Iris-setosa],[5.6,3,4.5,1.5,Iris-versicolor],[4.8,3.1,1.6,0.2,Iris-setosa],[5.8,2.8,5.1,2.4,Iris-virginica],[7.2,3.6,6.1,2.5,Iris-virginica],[5.1,3.5,1.4,0.3,Iris-setosa],[4.7,3.2,1.6,0.2,Iris-setosa],[6.6,3,4.4,1.4,Iris-versicolor]]
Use logistic regression to fit three linear decision boundaries that separate one class of flowers from the other two categories.
Use these decision boundaries to predict the class for flowers with the following dimensions:
\table[[,Sepal Length,Sepal Breadth,Petal Length,Petal Breadth],[(a)3.0,2.0,1.0,0.5,],[(b),2.0,3.0,3.0,1.5],[(c),4.0,2.5,4.5,1.0],[(d),6.0,4.0,5.5,2.2]]
 Q4.(25 pts). Consider the following 10-record Iris dataset. \table[[\table[[Sepal],[Length]],\table[[Sepal],[Breadth]],\table[[Petal],[Length]],\table[[Petal],[Breadth]],Species],[6.8,3.2,5.9,2.3,Iris-virginica],[6.9,3.1,5.1,2.3,Iris-virginica],[4.9,3,1.4,0.2,Iris-setosa],[5.6,3,4.5,1.5,Iris-versicolor],[4.8,3.1,1.6,0.2,Iris-setosa],[5.8,2.8,5.1,2.4,Iris-virginica],[7.2,3.6,6.1,2.5,Iris-virginica],[5.1,3.5,1.4,0.3,Iris-setosa],[4.7,3.2,1.6,0.2,Iris-setosa],[6.6,3,4.4,1.4,Iris-versicolor]] Use logistic

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!