Question: Question 2 to 15. Thanks Q2. Given y = cos2x, find the 3d derivative in terms y and ~ or y. A. V3 = -4y2

Question 2 to 15. Thanks

Q2. Given y = cos2x, find the 3"d derivative in terms y and ~ or y. A. V3 = -4y2 B. y3 = 471 C. y3 = -4y1 D. y3 = 4yz Q3. Find the 3"d derivative of tan (x) in terms y and ~% or A. V3 = yyz + 2 ()" B. ya = 2yy2 + 2 () C. ya = Zyyz + 2() D. ya = 2yyz +() Q4. Derive the 2"d derivative of x = y1/2 in terms of my or X1. A. x71 = -4x] B. x2x C. x7= x D. X2 = -4x] Use the following information to answer Q5 to Q7. 2x-1)(x+1) dx. Q5. Find the value of A of the first decomposed term. A.= B. -3 C - D. 2 Q6. Find the value of B of the second decomposed term. A. - D. - Q7. Evaluate J (2x-1)(x+1) dx A. =In(x + 1) -In(2x - x) + c B. - In(x + 1) +=In(2x - x) +c C. In(x + 1) -In(2x - x) + c D. ; In(x + 1) +=In(2x - x) + c Use the following information to answer Q8 to Q11. (1-x+2x-x x(x241)2 Q8. Find the value of A of the first decomposed term. A. -2 B. 0 C. -1 D 1 Q9. Find the values of B and C of the second decomposed term. A. [-1, -1) B. [1,-1] C. [-1,2] D. [0, -1] 4 / 11 Q10. Find the value of D and E of the third decomposed term. A. [0,-1] B. [1,0] C. (0, -2] D. [-1, -1] Q11. Compute x242 dx. A. Inx + 20141) -In(x2 + 1) - tan"lx + c B. Inx - 26241) 2 -4In(x2 + 1) - tan-1x + c C. Inx - 36247 -7In(x2 + 1) +tan"lx + c D. Inx + 20x241) + =In(x2 +1) + tan-1x + c Q12. Given the no reduction formula for ] sin"xdx = _ sin" xcosx "[ sin"-Exdx ; n 2 2, evaluate sin'xdx. 5/ 11 - sin'xcoxx _Asinxcosx _ 2x + C B. - sin'xcost _ asinxcost + 2x + c C. - sin'xcost 4 3sinxcosx + 3 x + c D. sin'xcoxx _3sixcosx _ 2x + C Q13. Find the domain of f (x) = - In(x2 -4) - 5. A. (-2, +00) B. (2, 00) C. (-00, 2) D. (-00, -2) Q14. What is the range of the function given by f (x) = 3in(4x - 6)? A. (-00, +co) B. (- +00) C. (-co,!) D. (-60, -6) Q15. Using integration by parts for J x" sin(bx)dx, we let u = x". True or False
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
