Question: Question 4 . Decrypt Bob's response e 3 . Let R = Z x x N - 1 where N > 1 . Remember, in

Question 4. Decrypt Bob's response e3.
Let R=ZxxN-1 where N>1. Remember, in this ring, we work
modulo the polynomial xN-1, or equivalently, with the relation that xN=
For p>1 any modulus (not necessarily prime), we denote by Rp=
(ZpZ)xxN-1, so in other words, we reduce the coefficients modulo
p, and keep the same relation on x. We do not assume p,q are prime below
unless otherwise stated. Finally, we let T(d,e) denotes the set of f(x)inR
which have d coefficients equal to +1,e coefficients equal to -1, and the re-
maining coefficients are equal to 0. As an example, x3+x-1inT(2,1) when
N4, and -x5+x2+x+1inT(3,1) for N6.
def encode(s):
s = str(s)
if len(s)>71:
print('Error, string too long.')
return 0
return sum(ord(s[i])*(128** i) for i in range(len(s)))
def decode(n):
n = int(n)
v =[]
while n !=0:
v.append(chr(n %128))
n //=128
return ''.join(v)
q =2227931092922619159088137825860917778654908962259364260724799634482871993679344024477214037820250089114550582112658547035427887568025339234287716719310475274676925427488455341264359399933469547884104546673995772201433027461094946187102932478528326005620630416132860562672779096576947422455142739470761
f =626346493922296891962453123852828762226840739369641575566811218944994465423391699556882442728756781708398121951194799184723646669035568862933089972532
g =977000403491994460922837866629768065514748480840502199588478427171542192931318741506250139746005024832848394512867819725451407771971457631489150320807
h = mod(f,q)^(-1)*mod(g,q)
e =78718410001068529677588572614497505845736983903998613145157719609579915026054651042742971468860259386790104756141288441579114641145660779208031511331352898518118466155496980362017676866087191935146013866713673612565156506113920877930874410944039265560871107404980288749922814814885918909569495979623042532040822272019812413569842170256723818746065909730713382503129868557825346347038766126043524590160376367091553994881762361291104351498414443598243
e3=1483322386654454587495018401466856358270021160509001725744622618980646039957815384765921577945979388255939805665289064215370310789868218779822555861806994459095498038225083313865694507736240943443495754222854085327209824275075557181208838536828375329242566221950127047314388792614649773136280238755453
##### EXAMPLE CODE FOR GAUSSIAN LATTICE BASIS REDUCTION ########
# In this code I will reduce the lattice
# L ={ k(1,h2)+ l(1,q2) : k,l in Z }
# It is important call h2 an Integer so that
# Sage does not do modular arithmetic here
v1= vector

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!