Question: questions. Input is gray - scale image of height = 2 2 4 , width = 2 2 4 , and output corresponus co ciass

questions. Input is gray-scale image of height =224, width =224, and output corresponus co ciass labels. Total number of classes is 10.
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
model = Sequential ()
.evel 1
model.add(Conv2D(input_shape=(XXXaXXX),filters=64,kernel_size=(3,3),padding="same",
activation="relu"))
model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu"))
model.add(MaxPool2D(pool_size =(2,2), strides =(2,2))
model.add (filters=128, kernel_size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=128, kernel_size=(3,3), padding="same", activation="relu"))
LAYER 4
model.add(MaxPool2D(pool_size=(2,2),strides =(2,2))
model. add(Conv2D (filters =2bar(5)6, kernel_size =(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=256, kernel_size =(3,3), padding="same", activation="relu"))
model:add(Conv2D(filters=256, kernel_size=(3,3), padding="same", activation="relu"))
model.add(MaxPool2D(pool_size=(2,2),strides =(2,2))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding="same", activation="relu"))
model. Conv2D(filters =512, kernel_size =(3,3), padding="same", activation="relu"))
 questions. Input is gray-scale image of height =224, width =224, and

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!