Question: Random variables x have a normal distribution with unknown mean and known variance. We independently take a random sample of this distribution twice. And each
Random variables x have a normal distribution with unknown mean and known variance. We independently take a random sample of this distribution twice. And each time for we present a two-sided confidence interval with the same confidence factor. The first sample has the population of n = 36 and the second sample has the population m. If the lower limit of the confidence interval of the sample of m corresponds exactly to the upper limit of confidence of the sample of n and the mean distance of the sample of m from the lower limit of the confidence interval of the sample of n is 2.5 times n is one of the lower limits of the sample m and the variance of the distribution is equal to 144, get the value of m.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
