Question: Recall that Z + = { 1 , 2 , 3 , dots } . Consider the following recursive algorithm mystery: Algorithmmystery ( n )

Recall that Z+={1,2,3,dots}. Consider the following recursive algorithm mystery:
Algorithmmystery(n) : ,(assume (:ninZ+}
If n=1 or n=2 then return n
else return mystery (n-1)+2** mystery (n-2)
Here are examples of how mystery would exectue on a few first inputs ninZ+:
mystery(1) returns 1 by the base case,
mystery(2) returns 2 by the base case,
mystery(3) returns mystery(2)+2** mystery (1)=2+2**1=4,
mystery(4) returns mystery(3)+2** mystery (2)=[dots]
Do two things: (1) state a closed-form formula for function f(n) s.t.f(n) is the output of mystery (n), for every ninZ+, and (2) use induction to prove that mystery (n)=f(n) for all n.?1
Recall that Z + = { 1 , 2 , 3 , dots } . Consider

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!