Question: Reducing a Markov model to a linear dynamical system. Recall the definition of a Markov model (if you need a refresher, see 9.1). Consider the

Reducing a Markov model to a linear dynamical system. Recall the definition of a Markov model (if you need a refresher, see 9.1). Consider the 2-Markov model xt+1 = A1xt + A2xt1, t = 2, 3, . . . , where xt is an n-vector. In class, we studied systems where the next state is a linear function of the current state. Note here that the next state now depends on the states at the two previous time steps. Define zt = (xt , xt1). Show that zt satisfies the linear dynamical system equation zt+1 = Bzt , for t = 2, 3, . . ., where B is a (2n) (2n) matrix. This idea can be used to express any K-Markov model as a linear dynamical system, with state (xt , . . . , xtK+1).

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!